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6.1.Introduction

Contents of This section discusses the basic concepts of statistical process control,
Section quality control and process capability.

How did Statistical Quality Control Begin?
What are Process Control Techniques?

What is Process Control ?

What to do if the processis "Out of Control"?
What to do if "In Control" but Unacceptable?
What is Process Capability?
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6. Process or Product Monitoring and Control

6.1. Introduction

6.1.1.How did Statistical Quality Control
Begin?

Historical
per spective

Science of
statisticsis
fairly recent

Quality Control has been with usfor along time. How long? It is safe
to say that when manufacturing began and competition accompanied
manufacturing, consumers would compare and choose the most
attractive product (barring a monopoly of course). If manufacturer A
discovered that manufacturer B's profits soared, the former tried to
improve his/her offerings, probably by improving the quality of the
output, and/or lowering the price. Improvement of quality did not
necessarily stop with the product - but also included the process used
for making the product.

The process was held in high esteem, as manifested by the medieval
guilds of the Middle Ages. These guilds mandated long periods of
training for apprentices, and those who were aiming to become master
craftsmen had to demonstrate evidence of their ability. Such
procedures were, in general, aimed at the maintenance and
improvement of the quality of the process.

In modern times we have professional societies, governmental
regulatory bodies such as the Food and Drug Administration, factory
inspection, etc., aimed at assuring the quality of products sold to
consumers. Quality Control has thus had along history.

On the other hand, statistical quality control is comparatively new.
The science of statisticsitself goes back only two to three centuries.
And its greatest developments have taken place during the 20th
century. The earlier applications were made in astronomy and physics
and in the biological and social sciences. It was not until the 1920s
that statistical theory began to be applied effectively to quality control
as aresult of the development of sampling theory.
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was first
advanced by
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Contributions
of Dodge and
Romig to
sampling
inspection
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6.1.1. How did Statistical Quality Control Begin?

Thefirst to apply the newly discovered statistical methodsto the
problem of quality control was Walter A. Shewhart of the Bell
Telephone Laboratories. He issued a memorandum on May 16, 1924
that featured a sketch of amodern control chart.

Shewhart kept improving and working on this scheme, and in 1931 he
published abook on statistical quality control, "Economic Control of
Quality of Manufactured Product”, published by Van Nostrand in
New Y ork. Thisbook set the tone for subsequent applications of
statistical methods to process control.

Two other Bell Labs statisticians, H.F. Dodge and H.G. Romig
spearheaded efforts in applying statistical theory to sampling
inspection. The work of these three pioneers constitutes much of what
nowadays comprises the theory of statistical quality control and
control. There is much more to say about the history of statistical
guality and the interested reader is invited to peruse one or more of
the references. A very good summary of the historical background of
SQC isfound in chapter 1 of "Quality Control and Industrial
Satistics’, by Acheson J. Duncan, published by Irwin, Hoemewood
[11, 1986. Also see Juran (Quality Progress 30(9).
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6. Process or Product Monitoring and Control
6.1. Introduction

6.1.2.What are Process Control
Techniques?

Statistical Process Control (SPC)

Typical There are many ways to implement process control. Key monitoring and
process Investigating tools include:
control -
o « Histograms
echniques
< . Check Sheets

o Pareto Charts

o Cause and Effect Diagrams

« Defect Concentration Diagrams
o Scatter Diagrams

o Control Charts

All these are described in Montgomery (2000). This chapter will focus
(Section 3) on control chart methods, specificaly:

o Classical Shewhart Control charts,

e Cumulative Sum (CUSUM) charts

« Exponentialy Weighted Moving Average (EWMA) charts
o Multivariate control charts
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6.1.2. What are Process Control Techniques?

Underlying
concepts

Tools of
Statistical
quality
control

Underlying
concepts of
statistical
quality
control
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The underlying concept of statistical process control is based on a
comparison of what is happening today with what happened previously.
We take a snapshot of how the process typically performs or build a
model of how we think the process will perform and cal culate control
limits for the expected measurements of the output of the process. Then
we collect data from the process and compare the data to the control
limits. The majority of measurements should fall within the control
limits. Measurements that fall outside the control limits are examined to
see if they belong to the same population as our initial snapshot or
model. Stated differently, we use historical datato compute theinitial
control limits. Then the data are compared against these initial limits.
Points that fall outside of the limits are investigated and, perhaps, some
will later be discarded. If so, the limits would be recomputed and the
process repeated. Thisis sometimes referred to as Phase | real-time
process monitoring.

Statistical Quality Control (SQC)
Several techniques can be used to investigate the product for defects or

defective pieces after all processing is complete. Typical tools of SQC
(described in section 2) are:

« Lot Acceptance sampling plans
« Skip lot sampling plans
« Military (MIL) Standard sampling plans

The purpose of statistical quality control isto ensure, in acost efficient
manner, that the product shipped to customers meets their specifications.
Inspecting every product is costly and inefficient, but the consequences
of shipping non conforming product can be significant in terms of
customer dissatisfaction. Statistical Quality Control is the process of
Inspecting enough product from given lots to probabilistically ensure a
specified quality level.
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6.1. Introduction

6.1.3.What is Process Control?

Two typesof  Process Control is the active changing of the process based on the
intervention  results of process monitoring. Once the process monitoring tools have
arepossible  detected an out-of-control situation, the person responsible for the

--oneis process makes a change to bring the process back into control.

based on 1. Out-of-control Action Plans (OCAPS) detail the action to be
engineering taken once an out-of-control situation is detected. A specific
judgment flowchart, that |eads the process engineer through the corrective
a{‘ﬁ th_e procedure, may be provided for each unique process.

other is

2. Advanced Process Control Loops are automated changes to the

SWIEFTEiEe process that are programmed to correct for the size of the
out-of -control measurement.
NIST . :
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6.1. Introduction

6.1.4.What to do if the process is "Out of

Control"?
Reactionsto If the process is out-of-control, the process engineer looks for an
out-of-control  assignable cause by following the out-of-control action plan (OCAP)
conditions associated with the control chart. Out-of-control refers to rejecting the
assumption that the current data are from the same population as the
data used to create theinitial control chart limits.
For classical Shewhart charts, a set of rules called the Western Electric
Rules (WECO Rules) and a set of trend rules often are used to
determine out-of-control.
NIST
0 TOOLS & AIDS SEARCH BACK MNEXT
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6. Process or Product Monitoring and Control
6.1. Introduction

6.1.5.What to do if "In Control" but
Unacceptable?

In control "“In Control" only means that the process is predictable in a statistical
means process  sense. What do you do if the processis“in control” but the average
iIspredictable  level istoo high or too low or the variability is unacceptable?

Process Process improvement techniques such as
Improvement o experiments
techniques .

o calibration

« re-anaysis of historical database
can be initiated to put the process on target or reduce the variability.

Process must Note that the process must be stable before it can be centered at a

be stable target value or its overal variation can be reduced.
NIST
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6. Process or Product Monitoring and Control
6.1. Introduction

6.1.6. What is Process Capability?

A process Process capability compares the output of an in-control process to the specification
capability limits by using capability indices. The comparison is made by forming the ratio of the
index uses spread between the process specifications (the specification "width") to the spread of
both the the process values, as measured by 6 process standard deviation units (the process
process "width").

ariabilit
\e/mo: th(lel 4 Process Capability Indices
process We are often required to compare the output of a stable process with the process

specifications  gpecifications and make a statement about how well the process meets specification. To
to determine do this we compare the natural variability of a stable process with the process

whether the specification limits.
processis
"capable" A capable processis one where almost all the measurements fall inside the specification

limits. This can be represented pictorially by the plot below:

LSL S0
} }

* actual process spread *

dllow able process spread

There are several statistics that can be used to measure the capability of a process: C,
Coio Comr
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6.1.6. What is Process Capability?

Most capability indices estimates are valid only if the sample size used is 'large enough'.
Large enough is generally thought to be about 50 independent data val ues.

The C,, Cp, and Cp, stetistics assume that the population of data values is normally

distributed. Assuming atwo sided specification, iff4 andear and are the mean and
standard deviation, respectively, of the normal dataand USL, LSL, and T are the upper
and lower specification limits and the target value, respectively, then the population
capability indices are defined as follows:

Definitions of S — LS
various Cp =
process b0
capability . USL—p p— LSL
idi _
indices Cyx = min | 3% 35 ]
[7SL — LSL
Cpm =
'ﬁ"/ﬂz + (p — T2
Sample Sampl e estimator s for these indices are given below. (Estimators are indicated with a
estimates of "hat" over them).
capabilit
ir?gzces g O — JSL — LSL
¥ T
3 . JUSL—x z—LSL
Cﬁk — miin [ 33 3 33 ]
n JSL — LSL
Gpm =

- ﬁx/sz—l—[i—T]E

The estimator for Cy, can also be expressed as Cp,, = C(1-k), where k is a scaled
distance between the midpoint of the specification range, m, and the process mean, .

Denote the midpoint of the specification range by m = (USL+L SL)/2. The distance
between the process mean,#, and the optimum, which ism, is# - m, where

m< p< LSL. The scaled distanceis

im — p

S T A X TAY Y

Q< k<1

(the absolute sign takes care of the case whenbSL < p<m
The estimator for the C,, index, adjusted by the k factor is

Cox = Cy(1 — k)
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Plot showing
C, for varying
process
widths

Trandating
capability into
"rejects’

since® < k < Litolows that Cuk < Oy,

To get an idea of the value of the C,, for varying process widths, consider the following

plot
LEL
L5L USL
/ o= l.22
I5L { UsL LEL [\ UsL
2 o= 1.47
F ':n= z.n

This can be expressed numerically by the table below:

USL - LS. 6 8a 10 127
Co 1.00 1.33 1.66 2.00
Rejects 27% 66ppm .6ppm 2 ppb
%of specused 100 75 60 50

where ppm = parts per million and ppb = parts per billion. Note that the rgject figures
are based on the assumption that the distribution is centered atf2.

We have discussed the situation with two spec. limits, the USL and LSL. Thisis known
asthe bilateral or two-sided case. There are many cases where only the lower or upper
specifications are used. Using one spec limit is called unilateral or one-sided. The
corresponding capability indices are
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One-sided
specifications
and the
corresponding
capability
indices

o allowable upper spread USL — p
pu

actual upper spread =~ 3o
and

allowable lower spread  ju— LSL
actual lower spread 3o

wheref andar are the process mean and standard deviation, respectively.

Cot =

Estimates of C,,,, and C,, are obtained by replacing / andar byx; and s, respectively.
The following relationship holds

Cp=(Cout Cp) /2.
This can be represented pictorially by

B

+ * UsL

actual pper spread

allowable ypper Spread

Note that we also can write:
Cpk = min {Cp|, Cpu} .

Confidence Limits For Capability Indices
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Confidence Assuming normally distributed process data, the distribution of the sample & follows
intervals for F
indices

o n

' o
from a Chi-sguare distribution and CP” and ~ ¥ have distributions related to the
non-central t distribution. Fortunately, approximate confidence limits related to the
normal distribution have been derived. Various approximations to the distribution of

o

¥ have also been derived and we will use anormal approximation here, as well.
The resulting formulas for confidence limits are given below:

100(1-x)% Confidence Limits for C,
Pr{Cy(L) £ 0y < Gy(La)} =1—a
where

Ll — 1|||X‘.|:2”:"1;"r2}L2 — 1|||X?”:1_‘1J"2}
i’ [ &

14 = degrees of freedom
Zhang (1990) derived the exact variance for the estimator of C, aswell asan

approximation for large n. The reference paper is. Zhang, Stenback and Wardrop:
Interval Estimation of the process capability index, Communicationsin Satistics:
Theory and Methods, 19(21), 1990, 4455-4470.

The variance is obtained as follows:

La€=/n[p— (USL+ LSL)/2]o
Lad = (USL — LSL)/o

- 1
&(—c) = f exp —3z°dz

Let —inf /2
Then Var(Clux)
= (d?/36){(n — 1)(n — 3)
—(d/9vm)(n — 1)(n — 3){v/2r exp (—*/2) + ¢[1 — 2@(—c)]}
+[(1/9)(n — 1)/(n(n — 3N](1 + )
T'{n—2)/2

=1/ g1y
#{d\ /1 — 2/ 2rexp (—2/2) — 21 — 2@(—c)]}?

His approximation is given by:
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Var(Cye) = 53— 03 { g )

where
n > 23,0.75 < gz < 4, |c| <100, and d < 24

It isimportant to note that the sample size should be at least 25 before these
approximations are valid. Another point to observe is that variations are not negligible
due to the randomness of capability indices.

Capability Index Example

An example For acertain process the USL = 20 and the LSL = 8. The observed process average,l'_{ =

16, and the standard deviation, s = 2. From thiswe obtain

~ USL—LSL 20-8

G = = — 1.{'
¥ 62 6(2)
This means that the process is capable aslong as it is located at the midpoint, m = (USL
+LSL)/2=14.

But it doesn't, since¥: = 16. Thek: factor is found by

— T 2
m—Z 2 3333

Y= OSL—1SD2 6

and

Cu = (1 — %) = 0.6667

Eas

C
Wewould liketo have ~P¥ at least 1.0, so thisis not agood process. If possible, reduce

the variability or/and center the process. We can compute the CP” and ¥

s _ USL—z 20-16

O = —5— = - = 06667
»n E—LSL 16—8

= = = 1‘
C > 35 3333

n

From this we see that the CP” ., which is the smallest of the above indicesis 0.6667.
This verifies that theformulaéﬁk — C‘Pu — k) is the algebraic equivalent of the

n o

-
min{ Cpu , P} definition.

What happensif the processisnot normally distributed?
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What youcan  Theindices that we considered thus far are based on normality of the process

do with distribution. This poses a problem when the process distribution is not normal. Without
non-normal going into the specifics, we can list some remedies.
data 1. Transform the data so that they become approximately normal. A popular

transformation is the Box-Cox transformation

2. Use or develop another set of indices, that apply to nonnormal distributions. One
statistic is called Cp (for non-parametric Cyy,). Its estimator is calculated by

= : Lisl, — median waadian — Ll
Clgn, = 11N —, ,
P90 — median  median — p( 003)

where p(0.995) is the 99.5th percentile of the data and p(.005) is the 0.5th
percentile of the data.

3. There are two flexible families of distributions that are often used: the Pearson
and the Johnson families. The sample skewness and kurtosis are used to pick a
model and process variability is then estimated.

4. Use mixture distributions to fit amodel to the data. A mixed Poisson model has
been used to devel op the equivalent of the 4 normality-based capability indices.

Thereis, of course, much more that can be said about the case of nonnormal data.

However, if a Box-Cox transformation can be successfully performed, oneis
encouraged to useit.

NIST
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6. Process or Product Monitoring and Control

6.2. Test Product for Acceptability: Lot
Acceptance Sampling

This section describes how to make decisions on a lot-by-lot basis
whether to accept alot as likely to meet requirements or regject the lot as
likely to have too many defective units.

Contents of This section consists of the following topics.
section 2 1. What is Acceptance Sampling?

2. What kinds of Lot Acceptance Sampling Plans (LASPs) are
there?

3. How do you Choose a Single Sampling Plan?
1. Choosing a Sampling Plan: MIL Standard 105D
2. Choosing a Sampling Plan with a given OC Curve
What is Double Sampling?
What is Multiple Sampling?
What is a Sequential Sampling Plan?
What is Skip Lot Sampling?

N o g &
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6. Process or Product Monitoring and Control

6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.1.What is Acceptance Sampling?

Contributions
of Dodge and
Romig to
acceptance
sampling

Definintion of
Lot
Acceptance
Sampling

"Attributes®
(i.e., defect
counting) will
be assumed

I mportant
point

Scenarios
leading to
acceptance
sampling

Acceptance sampling is an important field of statistical quality control
that was popularized by Dodge and Romig and originally applied by
the U.S. military to the testing of bullets during World War I1. If every
bullet was tested in advance, no bullets would be |eft to ship. If, on the
other hand, none were tested, malfunctions might occur in the field of
battle, with potentially disastrous results.

Dodge reasoned that a sample should be picked at random from the
lot, and on the basis of information that was yielded by the sample, a
decision should be made regarding the disposition of thelot. In
general, the decision is either to accept or reject the lot. Thisprocessis
called Lot Acceptance Sampling or just Acceptance Sampling.

Acceptance sampling is "the middle of the road" approach between no
inspection and 100% inspection. There are two major classifications of
acceptance plans: by attributes (*go, no-go") and by variables. The
attribute case is the most common for acceptance sampling, and will
be assumed for the rest of this section.

A point to remember is that the main purpose of acceptance sampling
Isto decide whether or not the lot is likely to be acceptable, not to
estimate the quality of thelot.

Acceptance sampling is employed when one or severa of the
following hold:

« Testing isdestructive
« Thecost of 100% inspection isvery high
» 100% inspection takes too long
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6.2.1. What is Acceptance Sampling?

It was pointed out by Harold Dodge in 1969 that Acceptance Quality
Control is not the same as Acceptance Sampling. The latter depends
on specific sampling plans, which when implemented indicate the
conditions for acceptance or rejection of the immediate lot that is
being inspected. The former may be implemented in the form of an
Acceptance Control Chart. The control limits for the Acceptance
Control Chart are computed using the specification limits and the
standard deviation of what is being monitored (see Ryan, 2000 for

details).

In 1942, Dodge stated:

"....basically the "acceptance quality control" system that was

devel oped encompasses the concept of protecting the consumer from
getting unacceptabl e defective product, and encouraging the producer
in the use of process quality control by: varying the quantity and
severity of acceptance inspections in direct relation to the importance
of the characteristics inspected, and in the inverse relation to the
goodness of the quality level asindication by those inspections.”

To reiterate the difference in these two approaches. acceptance
sampling plans are one-shot deals, which essentially test short-run
effects. Quality control is of the long-run variety, and is part of a
well-designed system for ot acceptance.

Schilling (1989) said:

"An individual sampling plan has much the effect of alone sniper,
while the sampling plan scheme can provide afusillade in the battle
for quality improvement.”

According to the SO standard on acceptance control charts (1SO
7966, 1993), an acceptance control chart combines consideration of

control implications with elements of acceptance sampling. It isan
appropriate tool for helping to make decisions with respect to process
acceptance. The difference between acceptance sampling approaches
and acceptance control chartsis the emphasis on process acceptability
rather than on product disposition decisions.
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6. Process or Product Monitoring and Control

6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.2. What kinds of Lot Acceptance
SamplingPlans (LASPs) are there?

LASPisa A lot acceptance sampling plan (LASP) is a sampling scheme and a set

sampling of rulesfor making decisions. The decision, based on counting the

scheme and number of defectivesin asample, can be to accept the lot, reject the lot,

asetof rules or even, for multiple or sequential sampling schemes, to take another
sample and then repeat the decision process.

Types of LASPsfall into the following categories:

acceptance « Single sampling plans:. One sample of items is selected at
plansto random from alot and the disposition of thelot is determined
choose from

from the resulting information. These plans are usually denoted as
(n,c) plansfor a sample size n, where the lot isrejected if there
are more than c defectives. These are the most common (and
easiest) plans to use although not the most efficient in terms of
average number of samples needed.

Double sampling plans: After the first sample istested, there are
three possibilities:

1. Accept thelot

2. Regect thelot

3. Nodecision

If the outcome is (3), and a second sample is taken, the procedure
Isto combine the results of both samples and make a final
decision based on that information.

Multiple sampling plans: Thisis an extension of the double
sampling plans where more than two samples are needed to reach
a conclusion. The advantage of multiple sampling is smaller
sample sizes.

Sequential sampling plans: . Thisisthe ultimate extension of
multiple sampling where items are selected from alot one at a
time and after inspection of each item a decision is made to accept
or reject the lot or select another unit.

Skip lot sampling plans:. Skip lot sampling means that only a
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6.2.2. What kinds of Lot Acceptance SamplingPlans (LASPs) are there?

fraction of the submitted |ots are inspected.

Definitions Deriving a plan, within one of the categories listed above, is discussed
of basic in the pages that follow. All derivations depend on the properties you
Acceptance  want the plan to have. These are described using the following terms:

Sampling
terms

Acceptable Quality Level (AQL): The AQL is a percent defective
that is the base line requirement for the quality of the producer's
product. The producer would like to design a sampling plan such
that there is a high probability of accepting alot that has a defect
level less than or equal to the AQL.

Lot Tolerance Percent Defective (LTPD): TheLTPD isa
designated high defect level that would be unacceptable to the
consumer. The consumer would like the sampling plan to have a
low probability of accepting alot with adefect level as high as
the LTPD.

Type | Error (Producer's Risk): Thisisthe probability, for a
given (n,c) sampling plan, of rejecting alot that has a defect level
equal to the AQL. The producer suffers when this occurs, because
alot with acceptable quality was rejected. The symbol ¢x is
commonly used for the Type | error and typical valuesfor ¢x
range from 0.2 to 0.01.

Typell Error (Consumer's Risk): Thisisthe probability, for a
given (n,c) sampling plan, of accepting alot with a defect level
egual to the LTPD. The consumer suffers when this occurs,
because alot with unacceptable quality was accepted. The symbol
ﬂ iscommonly used for the Type Il error and typical values range

from 0.2 to 0.01.

Operating Characteristic (OC) Curve: This curve plotsthe
probability of accepting the lot (Y -axis) versus the lot fraction or
percent defectives (X-axis). The OC curveisthe primary tool for
displaying and investigating the properties of a LASP.

Average Outgoing Quality (AOQ): A common procedure, when
sampling and testing is non-destructive, isto 100% inspect
rejected lots and replace all defectives with good units. In this
case, al rejected lots are made perfect and the only defects | eft
are those in lots that were accepted. AOQ's refer to the long term
defect level for this combined LASP and 100% inspection of
rejected lots process. If al lots come in with a defect level of
exactly p, and the OC curve for the chosen (n,c) LASP indicates a
probability p, of accepting such alot, over the long run the AOQ

can easily be shown to be:
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The final
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decision
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400 = PoP{ V- 7]

where N isthe lot size.

« Average Outgoing Quality Level (AOQL): A plot of the AOQ
(Y-axis) versus the incoming lot p (X-axis) will start at O for p =
0, and return to O for p = 1 (where every lot is 100% inspected
and rectified). In between, it will rise to amaximum. This
maximum, which is the worst possible long term AOQ), is called
the AOQL.

« Average Total I nspection (ATI): When rgjected lots are 100%
Inspected, it is easy to calculate the ATI if lots come consistently
with a defect level of p. For aLASP (n,c) with a probability p, of

accepting alot with defect level p, we have
ATl =n+ (1-py) (N-n)

where N isthe lot size.

« Average Sample Number (ASN): For a single sampling LASP
(n,c) we know each and every lot has a sample of size n taken and
inspected or tested. For double, multiple and sequential LASP's,
the amount of sampling varies depending on the the number of
defects observed. For any given double, multiple or sequential
plan, along term ASN can be calculated assuming all lots comein
with adefect level of p. A plot of the ASN, versus the incoming
defect level p, describes the sampling efficiency of agiven LASP
scheme.

Making afinal choice between single or multiple sampling plans that
have acceptable properties is a matter of deciding whether the average
sampling savings gained by the various multiple sampling plansjustifies
the additional complexity of these plans and the uncertainty of not
knowing how much sampling and inspection will be done on a
day-by-day basis.
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6. Process or Product Monitoring and Control

6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.3.How do you Choose a Single
Sampling Plan?

Two
methods for
choosing a
single
sample
acceptance
plan
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A single sampling plan, as previously defined, is specified by the pair of
numbers (n,c). The sample sizeisn, and the lot is regjected if there are
more than c defectives in the sample; otherwise the lot is accepted.

There are two widely used ways of picking (n,c):
1. Usetables (suchasMIL STD 105D) that focus on either the AQL
or the LTPD desired.
2. Specify 2 desired points on the OC curve and solve for the (n,c)
that uniquely determines an OC curve going through these points.
The next two pages describe these methods in detail.
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6. Process or Product Monitoring and Control

6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.3. How do you Choose a Single Sampling Plan?

6.2.3.1.Choosing a Sampling Plan: MIL

The AQL or
Acceptable
Quality
Level isthe
baseline
requirement

Military
Sandard
105E
sampling
plan

Standard 105D

Sampling plans are typically set up with reference to an acceptable
guality level, or AQL. The AQL isthe base line requirement for the
guality of the producer's product. The producer would like to design a
sampling plan such that the OC curve yields a high probability of
acceptance at the AQL. On the other side of the OC curve, the consumer
wishes to be protected from accepting poor quality from the producer.
So the consumer establishes a criterion, the lot tolerance percent
defective or LTPD. Here theideaisto only accept poor quality product
with avery low probability. Mil Std plans have been used for over 50
years to achieve these goals.

The U.S. Department of Defense Military Standard 105E

Standard military sampling procedures for inspection by attributes were
developed during World War 11. Army Ordnance tables and procedures
were generated in the early 1940's and these grew into the Army Service
Forcestables. At the end of the war, the Navy also worked on a set of
tables. In the meanwhile, the Statistical Research Group at Columbia
University performed research and outputted many outstanding results
on attribute sampling plans.

These three streams combined in 1950 into a standard called Mil. Std.
105A. It has since been modified from time to time and issued as 105B,
195C and 105D. Mil. Std. 105D was issued by the U.S. government in
1963. It was adopted in 1971 by the American National Standards
Institute as ANSI Standard Z1.4 and in 1974 it was adopted (with minor
changes) by the International Organization for Standardization as 1SO
Std. 2859. The latest revision is Mil. Std 105E and was issued in 1989.

These three similar standards are continuously being updated and
revised, but the basic tables remain the same. Thus the discussion that
follows of the germane aspects of Mil. Std. 105E also appliesto the
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6.2.3.1. Choosing a Sampling Plan: MIL Standard 105D

other two standards.
Description of Mil. Std. 105D

This document is essentially a set of individual plans, organized in a
system of sampling schemes. A sampling scheme consists of a
combination of anormal sampling plan, atightened sampling plan, and
areduced sampling plan plus rules for switching from one to the other.

The foundation of the Standard is the acceptable quality level or AQL.
In the following scenario, a certain military agency, called the
Consumer from here on, wants to purchase a particular product from a
supplier, called the Producer from here on.

In applying the Mil. Std. 105D it is expected that there is perfect
agreement between Producer and Consumer regarding what the AQL is
for agiven product characteristic. It is understood by both parties that
the Producer will be submitting for inspection a number of lots whose
quality level istypically as good as specified by the Consumer.
Continued quality is assured by the acceptance or rejection of lots
following a particular sampling plan and aso by providing for a shift to
another, tighter sampling plan, when there is evidence that the
Producer's product does not meet the agreed upon AQL.

Mil. Std. 105E offers three types of sampling plans: single, double and
multiple plans. The choiceis, in general, up to the inspectors.

Because of the three possible selections, the standard does not give a
sample size, but rather a sample code letter. This, together with the
decision of the type of plan yields the specific sampling plan to be
used.

In addition to an initial decision on an AQL it is also hecessary to decide
on an "inspection level". This determines the relationship between the
lot size and the sample size. The standard offers three general and four
special levels.
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Sepsinthe The stepsin the use of the standard can be summarized as follows:

standard 1

No ok~ owbd

. Decide on the AQL.

Decide on the inspection level.

Determine the lot size.

Enter table to find sample size code | etter.
Decide on type of sampling to be used.

Enter proper table to find the plan to be used.

Begin with normal inspection, follow the switching rules and the
rule for stopping the inspection (if needed).

Additional There is much more that can be said about Mil. Std. 105E, (and 105D).
information The interested reader is referred to references such as (Montgomery

(2000), Schilling, tables 11-2 to 11-17, and Duncan, pages 214 - 248).

Thereisalso (currently) aweb site developed by Galit Shmueli that will

develop sampling plans interactively with the user, according to
Military Standard 105E (ANSI/ASQC Z1.4, SO 2859) Tables.
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling
6.2.3. How do you Choose a Single Sampling Plan?

6.2.3.2.Choosing a Sampling Plan with a
given OC Curve

Sample  We start by looking at atypical OC curve. The OC curvefor a (52 ,3) sampling
OC plan is shown below.
curve

D cUnve

Pa

P percent defective per Iot
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6.2.3.2. Choosing a Sampling Plan with a given OC Curve

Number of
defectivesis
approximately
binomial

The binomial
distribution

Sample table
for Pa, Pd
using the
binomial
distribution

It isinstructive to show how the points on this curve are obtained, once
we have a sampling plan (n,c) - later we will demonstrate how a
sampling plan (n,c) is obtained.

We assume that the lot size N is very large, as compared to the sample
size n, so that removing the sample doesn't significantly change the
remainder of the lot, no matter how many defects are in the sample.
Then the distribution of the number of defectives, d, in arandom
sample of nitemsis approximately binomial with parametersn and p,
where p isthe fraction of defectives per |ot.

The probability of observing exactly d defectivesis given by

P@= @)= g wpt (1=

The probability of acceptance is the probability that d, the number of
defectives, isless than or equal to c, the accept number. This means
that

4

P, = Pld =c} =Z|”+Ip=f[1—pj"“"

dln—d)!
Using this formulawith n =52 and c=3 and p = .01, .02, ...,.12 wefind
Pa I:)d
.998 .01
.980 .02
.930 .03
.845 .04
.739 .05
.620 .06
502 .07
.394 .08
.300 .09
223 .10
162 A1
115 A2

Solving for (n,c)
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6.2.3.2. Choosing a Sampling Plan with a given OC Curve

Equations for
calculating a
sampling plan
with a given
OC curve

Calculating
AOQ's

In order to design a sampling plan with a specified OC curve one
needs two designated points. Let us design a sampling plan such that
the probability of acceptanceis 1-¢x for lots with fraction defective p;
and the probability of acceptanceis ﬁ for lots with fraction defective
p,. Typical choices for these points are: p; isthe AQL, p, isthe LTPD
and ¢x, ﬂ are the Producer's Risk (Type | error) and Consumer's Risk
(Type I error), respectively.

If we are willing to assume that binomial sampling isvalid, then the
sample size n, and the acceptance number ¢ are the solution to

4

o 2 ify . yrd
1 E_gdl[m—d]!pl[l 2

- 7l drq L yeed
ﬁ_gd!{ﬂ—dj!ﬁ(l pj:l

These two simultaneous equations are nonlinear so thereis no simple,
direct solution. There are however a number of iterative techniques
available that give approximate solutions so that composition of a
computer program poses few problems.

Average Outgoing Quality (AOQ)

We can also calculate the AOQ for a (n,c) sampling plan, provided
rejected lots are 100% inspected and defectives are replaced with good
parts.

Assume all lots come in with exactly a pg proportion of defectives.

After screening arejected lot, the final fraction defectives will be zero
for that lot. However, accepted lots have fraction defectivep.

Therefore, the outgoing lots from the inspection stations are a mixture
of lots with fractions defective py and 0. Assuming the lot sizeis N, we

have.

p, |- )
N

For example, let N = 10000, n =52, ¢c = 3, and p, the quality of
incoming lots, = 0.03. Now at p = 0.03, we glean from the OC curve
table that p, = 0.930 and

AOQ = (.930)(.03)(10000-52) / 10000 = 0.02775.

A0Q =
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6.2.3.2. Choosing a Sampling Plan with a given OC Curve

Sampletable Setting p = .01, .02, ..., .12 we can generate the following table

of AOQ AOO
Versus p 0010

0196
0278
.0338
.0369
0372
.0351
0315
.0270
0223
0178
.0138

P
.01

.02
.03
.04
.05
.06
.07
.08
.09
10
A1
12

Sample plot A plot of the AOQ versus p is given below.

of AOQ
Versus p

Average Outgoing QualtyCurve

0.04

0.035 -
0.03 /
0.025 -
o

|
1] 025

P = Incaming Guality Level
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6.2.3.2. Choosing a Sampling Plan with a given OC Curve

I nter pretation
of AOQ plot

Calculating
the Average
Total
Inspection

From examining this curve we observe that when the incoming quality
iIsvery good (very small fraction of defectives coming in), then the
outgoing quality is also very good (very small fraction of defectives
going out). When the incoming lot quality is very bad, most of the lots
are rejected and then inspected. The "duds' are eliminated or replaced
by good ones, so that the quality of the outgoing lots, the AOQ),
becomes very good. In between these extremes, the AOQ rises, reaches
amaximum, and then drops.

The maximum ordinate on the AOQ curve represents the worst
possible quality that results from the rectifying inspection program. It
is called the aver age outgoing quality limit, (AOQL ).

From the table we see that the AOQL = 0.0372 at p = .06 for the above
example.

Onefina remark: if N >> n, then the AOQ ~ p5 p -

The Average Total Inspection (ATI)

What is the total amount of inspection when rejected |ots are screened?
If al lots contain zero defectives, no lot will be rejected.

If al items are defective, all lotswill be inspected, and the amount to
be inspected is N.

Finaly, if thelot quality is0 < p < 1, the average amount of inspection
per lot will vary between the sample size n, and the lot size N.

L et the quality of the lot be p and the probability of lot acceptance be
P, then the ATI per lot is

ATl =n+ (1-py) (N-n)

For example, let N = 10000, n =52, c =3, and p = .03 We know from
the OC table that p; = 0.930. Then ATl = 52 + (1-.930) (10000 - 52) =

753. (Note that while 0.930 was rounded to three decimal places, 753
was obtained using more decimal places.)
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6.2.3.2. Choosing a Sampling Plan with a given OC Curve

Sampletable Setting p= .01, .02, ....14 generates the following table

of ATI versus . 5
" 70 .01
253 .02
753 .03
1584 .04
2655 .05
3836 .06
5007 .07
6083 .08
7012 .09
7779 .10
8388 .11
8854 .12
9201 .13
9453 .14
Plot of ATI A plot of ATl versus p, the Incoming Lot Quality (ILQ) is given below.
Versus p
10000 - Average Total Inspection Curve
9000 — AT
g000 - /.vf
7000 - e

BO00 -
Er =000 - /
4000 - *
3000 - ’X
2000 - /
1000 - :
0- it
| | | | | | | | | | | | | | | |
0 .MOo2o304 0508070309 1 1112131415
p = Incaming Guality Lesvel
NIST : :
HOME [TOOLS & AIDS |SEARCH [BACK MNEXT
SEMATECH
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6.2.4. What is Double Sampling?
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6. Process or Product Monitoring and Control

6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.4.What is Double Sampling?

How double
sampling
plans work

Double Sampling Plans

Double and multiple sampling plans were invented to give a questionable lot
another chance. For example, if in double sampling the results of the first
sample are not conclusive with regard to accepting or rejecting, a second
sampleistaken. Application of double sampling requires that afirst sample of
Size ny istaken at random from the (large) lot. The number of defectivesis then

counted and compared to the first sample's acceptance number a; and rejection
number r;. Denote the number of defectivesin sample 1 by d; and in sample 2
by ds, then:

If d; < &, thelot is accepted.

If dy > r4, thelot isrejected.

If a; <dq <r4, asecond sampleis taken.

If a second sample of size n, istaken, the number of defectives, d, is counted.
The total number of defectivesis D, = d; + d,. Now thisis compared to the
acceptance number a, and the rejection number r, of sample 2. In double
sampling, r, = a, + 1 to ensure a decision on the sample.

If D, < &y, thelot is accepted.
If Dy 2> 1y, thelot is rejected.

Design of a Double Sampling Plan
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6.2.4. What is Double Sampling?

Design of a The parameters required to construct the OC curve are similar to the single
double
sampling
plan

sample case. The two points of interest are (p;, 1-tx) and (p», ﬁ , Where p; isthe
lot fraction defective for plan 1 and p, isthelot fraction defective for plan 2. As

far as the respective sample sizes are concerned, the second sample size must
be equal to, or an even multiple of, the first sample size.

There exist avariety of tables that assist the user in constructing double and
multiple sampling plans. The index to these tables is the po/p, ratio, where p, >

p;. One set of tables, taken from the Army Chemical Corps Engineering

Agency for ¢x = .05 and ﬁ =.10, isgiven below:

Tablesfor ny =n,

accept approximation values
R= numbers of pny for
Po/P1 Cy Co P=.95 P=.10
11.90 0 1 0.21 2.50
7.54 1 2 0.52 3.92
6.79 0 2 0.43 2.96
5.39 1 3 0.76 411
4.65 2 4 1.16 5.39
4.25 1 4 1.04 4.42
3.88 2 5 1.43 5.55
3.63 3 6 1.87 6.78
3.38 2 6 1.72 5.82
321 3 7 2.15 6.91
3.09 4 8 2.62 8.10
2.85 4 9 2.90 8.26
2.60 5 11 3.68 9.56
2.44 5 12 4.00 9.77
2.32 5 13 4.35 10.08
2.22 5 14 4.70 10.45
2.12 5 16 5.39 1141

Tablesfor n, = 2n,

accept approximation values
R= numbers of pny for
p2/p1 C1 Co P=.95 P=.10
14.50 0 1 0.16 2.32
8.07 0 2 0.30 2.42
6.48 1 3 0.60 3.89
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5.39 0 3 0.49 2.64
5.09 0 4 0.77 3.92
4.31 1 4 0.68 2.93
4.19 0 5 0.96 4.02
3.60 1 6 1.16 4.17
3.26 1 8 1.68 5.47
2.96 2 10 2.27 6.72
2.77 3 11 2.46 6.82
2.62 4 13 3.07 8.05
2.46 4 14 3.29 8.11
221 3 15 341 7.55
1.97 4 20 4.75 9.35
1.74 6 30 7.45 12.96

Example

Example of We wish to construct a double sampling plan according to

adouble p;=001 =005 p,;=005 =010 andn;=n,

sampling _ _ . ,

plan The plansin the corresponding table are indexed on the ratio
R=py/p; =5

We find the row whose Ris closet to 5. Thisis the 5th row (R =4.65). This
givesc, = 2 and ¢, = 4. The value of n, is determined from either of the two

columns labeled pn;.

The left holds &x constant at 0.05 (P = 0.95 = 1 - ¢x) and the right holds /3
constant at 0.10. (P = 0.10). Then holding ¢x constant we find pn; = 1.16 so n;
= 1.16/p, = 116. And, holding /3 constant we find pn; = 5.39, so ny = 5.39/p, =
108. Thusthe desired sampling planis

n1:108 C1:2 n2:108 C2:4
If we opt for n, = 2n,, and follow the same procedure using the appropriate
table, theplanis:

n1:77 C]_:l n2:154 C2:4
Thefirst plan needs less samplesif the number of defectivesin sample1is

greater than 2, while the second plan needs less samples if the number of
defectivesin sample 1 islessthan 2.

ASN Curvefor a Double Sampling Plan
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Construction
of the ASN
curve

The ASN
curve for a
double
sampling
plan

Since when using a double sampling plan the sample size depends on whether
or not a second sample isrequired, an important consideration for this kind of
sampling is the Average Sample Number (ASN) curve. This curve plots the

ASN versus p', the true fraction defective in an incoming lot.

We will illustrate how to calculate the ASN curve with an example. Consider a
double-sampling plan ny = 50, ¢;= 2, n, = 100, ¢, = 6, where n, is the sample

size for plan 1, with accept number c,, and n,, ¢,, are the sample size and
accept number, respectively, for plan 2.

Let p' = .06. Then the probability of acceptance on the first sample, which isthe
chance of getting two or less defectives, is.416 (using binomial tables). The
probability of rejection on the second sample, which is the chance of getting
more than six defectives, is (1-.971) = .029. The probability of making a
decision on the first sampleis.445, equal to the sum of .416 and .029. With
complete inspection of the second sample, the average size sample is equal to
the size of the first sample times the probability that there will be only one
sample plus the size of the combined samples times the probability that a
second sample will be necessary. For the sampling plan under consideration,
the ASN with complete inspection of the second sample for ap' of .06 is

50(.445) + 150(.555) = 106

The general formulafor an average sample number curve of a double-sampling
plan with complete inspection of the second sampleis

ASN =n1P1 + (N1 + Np)(1-Py) =ny+ny(1-Py)
where P, isthe probability of adecision on the first sample. The graph below
shows a plot of the ASN versusp'.
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Average Sample Number
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Lot fraction defective
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6. Process or Product Monitoring and Control

6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.5.What is Multiple Sampling?

Multiple
Sampling is
an extension
of the
double
sampling
concept

Procedure
for multiple
sampling

Efficiency
measured by
the ASN

Multiple sampling is an extension of double sampling. It involves
inspection of 1 to k successive samples as required to reach an ultimate
decision.

Mil-Std 105D suggests k = 7 is a good number. Multiple sampling plans
are usually presented in tabular form:

The procedure commences with taking a random sample of size n,from
alargelot of size N and counting the number of defectives, d;.

if dy < g thelot is accepted.
if dq 2> rq thelot isrejected.
If a; <d; <rq, another sample is taken.
If subsequent samples are required, the first sample procedureis

repeated sample by sample. For each sample, the total number of
defectives found at any stage, say stagei, is

2
D= d;
J=1
Thisis compared with the acceptance number a; and the rejection
number r; for that stage until a decision is made. Sometimes acceptance

isnot allowed at the early stages of multiple sampling; however,
rejection can occur at any stage.

Efficiency for a multiple sampling scheme is measured by the average
sample number (ASN) required for agiven Type |l and Type || set of
errors. The number of samples needed when following a multiple
sampling scheme may vary from trial to trial, and the ASN represents the
average of what might happen over many trials with afixed incoming
defect level.
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.6.What is a Sequential Sampling Plan?

Sequential Sequential sampling is different from single, double or multiple

Sampling sampling. Here one takes a sequence of samples from alot. How many
total sampleslooked at is afunction of the results of the sampling
process.

Iltem-by-item  The sequence can be one sample at atime, and then the sampling

and group processis usually called item-by-item sequential sampling. One can also
sequential select sample sizes greater than one, in which case the processis
sampling referred to as group sequential sampling. Item-by-item is more popul ar
So we concentrate on it. The operation of such aplanisillustrated
below:
Diagram of . .
item-by-item Sequential Sampling
sampling
- reject x_=h+an
-]

continue spmpling
%,=-h,+sn

) ’J
accept

1 n, pumhber of items

n e d HF oo e o
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6.2.6. What is a Sequential Sampling Plan?

Description
of
sequentail
sampling
graph

Equations
for the limit
lines

Example of
a sequential
sampling
plan

The cumulative observed number of defectivesis plotted on the graph.
For each point, the x-axisis the total number of items thus far selected,
and the y-axisis the total number of observed defectives. If the plotted
point falls within the parallel lines the process continues by drawing
another sample. As soon as a point falls on or above the upper line, the
lot is regjected. And when a point falls on or below the lower line, the ot
Is accepted. The process can theoretically last until the lot is 100%
inspected. However, as arule of thumb, sequential-sampling plans are
truncated after the number inspected reaches three times the number that
would have been inspected using a corresponding single sampling plan.

The equations for the two limit lines are functions of the parameters p;,
o P2, and /3.
T, = —h; + sn (acceptance line)

7, = hy + sn  (rejection line)
where

hy = (log ~=*)/k

1 = LAg ﬂ :

o (lﬂg ]ﬂr
(1—15‘13'

" =

s = (logl7—_'1)/k

Instead of using the graph to determine the fate of the lot, one can resort
to generating tables (with the help of a computer program).

Asan example, let p; =.01, p, =
eguations are

r, = —0.939 + 0.04n
r, = 1.25 + {.04n

Both acceptance numbers and rejection numbers must be integers. The
acceptance number is the next integer less than or equal to x5 and the

rejection number is the next integer greater than or equal to x,. Thus for

n = 1, the acceptance number = -1, which isimpossible, and the
rejection number = 2, which is also impossible. For n = 24, the
acceptance number is 0 and the rgjection number = 3.

Theresultsfor n =1, 2, 3... 26 are tabulated below.

10, gx = .05, ﬂ =.10. Theresulting
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n n n n n n
inspect accept reject inspect accept reject

1 X X 14 X 2
2 X 2 15 X 2
3 X 2 16 X 3
4 X 2 17 X 3
5 X 2 18 X 3
6 X 2 19 X 3
7 X 2 20 X 3
8 X 2 21 X 3
9 X 2 22 X 3
10 X 2 23 X 3
11 X 2 24 0 3
12 X 2 25 0 3
13 X 2 26 0 3

So, for n = 24 the acceptance number is 0 and the rejection number is 3.
The "Xx" means that acceptance or regjection is not possible.
Other sequential plans are given below.

n n n
inspect accept reject

49 1 3
58 1 4
74 2 4
83 2 5
100 3 S
109 3 6

The corresponding single sampling plan is (52,2) and double sampling
planis(21,0), (21,1).

Efficiency Efficiency for a sequential sampling scheme is measured by the average
measured by  sample number (ASN) required for agiven Type | and Type Il set of
AN errors. The number of samples needed when following a sequential

sampling scheme may vary from trial to trial, and the ASN represents the
average of what might happen over many trials with afixed incoming
defect level. Good software for designing sequential sampling schemes
will calculate the ASN curve as a function of the incoming defect level.
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.7.What is Skip Lot Sampling?

Skip Lot Skip Lot sampling means that only afraction of the submitted lots are

Sampling inspected. This mode of sampling is of the cost-saving variety in terms of time
and effort. However skip-lot sampling should only be used when it has been
demonstrated that the quality of the submitted product is very good.

Implementation A skip-lot sampling plan isimplemented as follows:

of skip-lot 1. Design asingle sampling plan by specifying the alpha and beta risks and
sampling plan the consumer/producer's risks. This plan is called "the reference sampling
plan”.

2. Start with normal lot-by-lot inspection, using the reference plan.

3. When a pre-specified number, i, of consecutive lots are accepted, switch
to inspecting only afraction f of the lots. The selection of the members of
that fraction is done at random.

4. When alot is rejected return to normal inspection.

Thefandi The parametersf and i are essential to calculating the probability of acceptance

parameters for a skip-lot sampling plan. In this scheme, i, called the clearance number, isa
positive integer and the sampling fraction f issuch that 0 < f < 1. Hence, when f
= 1 thereisno longer skip-lot sampling. The calculation of the acceptance
probability for the skip-lot sampling plan is performed viathe following
formula

:ﬁﬂ+(1—f)F*'
F+1-)F

where P is the probability of accepting alot with a given proportion of
incoming defectives p, from the OC curve of the single sampling plan.

B (i)

The following relationships hold:
for agiveni, thesmaller isf, the greater is P,
for agiven f, the smaller isi, the greater is P,
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6.2.7. What is Skip Lot Sampling?

[lustration of
a skip lot
sampling plan

ASN of skip-lot
sampling plan

NIST
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Anillustration of aa skip-lot sampling plan is given below.

Bottom Curve is {20,1) ref. plan
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Fa

0.4
0.2

I:I I | I | |
o1 004 007 0.1 013 018 0149

Fraction Defective

An important property of skip-lot sampling plans is the average sample number
(ASN ). The ASN of a skip-lot sampling planis

ANgip 1ot = (F)(ASN; ¢ference)
where F is defined by
f

(1-FHP+f

Therefore, since 0 < F < 1, it follows that the ASN of skip-lot sampling is
smaller than the ASN of the reference sampling plan.

=

In summary, skip-lot sampling is preferred when the quality of the submitted
lotsis excellent and the supplier can demonstrate a proven track record.
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6.3. Univariate and Multivariate Control Charts
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6. Process or Product Monitoring and Control

6.3.Univariate and Multivariate Control
Charts

Contents of Control chartsin this section are classified and described according to

section 3 three general types: variables, attributes and multivariate.
1. What are Control Charts?

2. What are Variables Control Charts?
1. Shewhart X bar and R and S Control Charts
2. Individuals Control Charts
3. Cusum Control Charts

1. Cusum Average Run Length
4. EWMA Control Charts
3. What are Attributes Control Charts?
1. Counts Control Charts
2. Proportions Control Charts
4. What are Multivariate Control Charts?
1. Hotelling Control Charts
2. Principal Components Control Charts
3. Multivariate EWMA Charts
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6. Process or Product Monitoring and Control

6.3. Univariate and Multivariate Control Charts

6.3.1.What are Control Charts?

Comparison of
univariate and
multivariate
control data

Characteristics
of control
charts

Chart
demonstrating
basis of
control chart

Control charts are used to routinely monitor quality. Depending on the
number of process charagcteristics to be monitored, there are two basic
types of control charts. The first, referred to as a univariate control
chart, isagraphical display (chart) of one quality characteristic. The
second, referred to as a multivariate control chart, isa graphical

display of a statistic that summarizes or represents more than one
quality characteristic.

If asingle quality characteristic has been measured or computed from
asample, the control chart shows the value of the quality characteristic
versus the sample number or versus time. In general the chart contains
a center line that represents the mean value for the in-control process.
Two other horizontal lines, called the upper control limit (UCL) and
the lower control limit (LCL) are also shown on the chart. These
control limits are chosen so that almost all of the data points will fall
within these limits as long as the process remains in-control. The
figure below illustrates this.
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6.3.1. What are Control Charts?

Why control
charts "work"

Theoretical Bazsis for a Control Chart

Upper C cetrol Limit

Certer Line

Loowrer Corrol Lijmit

Time or Order of Proruction

The control limits as pictured in the graph might be .001 probability
limits. If so, and if chance causes alone were present, the probability of
apoint falling above the upper limit would be one out of a thousand,
and similarly, a point falling below the lower limit would be one out of
athousand. We would be searching for an assignable cause if a point
would fall outside these limits. Where we put these limits will
determine the risk of undertaking such a search when in redlity thereis
no assignable cause for variation.

Since two out of athousand is avery small risk, the 0.001 limits may
be said to give practical assurances that, if a point falls outside these
limits, the variation was caused be an assignable cause. It must be
noted that two out of one thousand is a purely arbitrary number. There
Is no reason why it could have been set to one out a hundred or even
larger. The decision would depend on the amount of risk the
management of the quality control program iswilling to take. In
genera (in the world of quality control) it is customary to use limits
that approximate the 0.002 standard.

L etting X denote the value of a process characteristic, if the system of
chance causes generates a variation in X that follows the normal
distribution, the 0.001 probability limits will be very close to the 3ar
limits. From normal tables we glean that the 3ar in one direction is
0.00135, or in both directions 0.0027. For normal distributions,
therefore, the 3ar limits are the practical equivalent of 0.001
probability limits.
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Plus or minus
"3 sigma"
l[imitsare
typical

Strategies for
dealing with
out-of-control
findings

Inthe U.S., whether X is normally distributed or not, it is an acceptable
practice to base the control limits upon a multiple of the standard
deviation. Usually this multiple is 3 and thus the limits are called
3-sigmalimits. Thisterm is used whether the standard deviation is the
universe or population parameter, or some estimate thereof, or ssmply
a"standard value" for control chart purposes. It should be inferred
from the context what standard deviation isinvolved. (Note that in the
U.K., statisticians generally prefer to adhere to probability limits.)

If the underlying distribution is skewed, say in the positive direction
the 3-sigma limit will fall short of the upper 0.001 limit, while the
lower 3-sigmalimit will fall below the 0.001 limit. This situation
means that the risk of looking for assignable causes of positive
variation when none exists will be greater than one out of a thousand.
But the risk of searching for an assignable cause of negative variation,
when none exists, will be reduced. The net result, however, will be an
increase in the risk of a chance variation beyond the control limits.
How much this risk will be increased will depend on the degree of
skewness.

If variation in quality follows a Poisson distribution, for example, for
which np = .8, therisk of exceeding the upper limit by chance would
be raised by the use of 3-sigma limits from 0.001 to 0.009 and the
lower limit reduces from 0.001 to 0. For a Poisson distribution the
mean and variance both equal np. Hence the upper 3-sigmalimit is 0.8
+ 3 sgrt(.8) = 3.48 and the lower limit = O (here sgrt denotes "square
root"). For np = .8 the probability of getting more than 3 successes =
0.0009.

If adata point falls outside the control limits, we assume that the
process is probably out of control and that an investigation is
warranted to find and eliminate the cause or causes.

Does this mean that when all points fall within the limits, the processis
in control ? Not necessarily. If the plot looks non-random, that is, if the
points exhibit some form of systematic behavior, thereis still
something wrong. For example, if the first 25 of 30 points fall above
the center line and the last 5 fall below the center line, we would wish
to know why thisis so. Statistical methods to detect sequences or
nonrandom patterns can be applied to the interpretation of control
charts. To be sure, "in control" impliesthat all points are between the
control limits and they form a random pattern.
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6.3.2. What are Variables Control Charts?

L P

[HOME

ENGINEERING STATISTICS HANDEBOOK

' TOOLS & AIDS [SEARCH [BACK MNEXT]

6. Process or Product Monitoring and Control

6.3. Univariate and Multivariate Control Charts

6.3.2.What are Variables Control Charts?

Shewhart
Control
Chartsfor
variables

During the 1920's, Dr. Walter A. Shewhart proposed a general model
for control charts asfollows:

Let w be a sample statistic that measures some continuously varying
quality characteristic of interest (e.g., thickness), and suppose that the
mean of wis f4,, with astandard deviation of ¢,,. Then the center line,

the UCL and the LCL are

UCL = f4, +kay,
Center Line = f4,
LCL = f4,, - ke,

where k is the distance of the control limits from the center line,
expressed in terms of standard deviation units. When k is set to 3, we
speak of 3-sigma control charts.

Historically, k = 3 has become an accepted standard in industry.

The centerline is the process mean, which in general is unknown. We
replace it with atarget or the average of all the data. The quantity that

we plot is the sample average, X. Thechart is called the xbar chart.

We also have to deal with the fact that ¢ is, in general, unknown. Here
we replace a7, with a given standard value, or we estimate it by a

function of the average standard deviation. Thisis obtained by
averaging the individual standard deviations that we calculated from
each of m preliminary (or present) samples, each of sizen. This
function will be discussed shortly.

It is equally important to examine the standard deviationsin
ascertaining whether the processisin control. Thereis, unfortunately, a
dlight problem involved when we work with the usual estimator of ¢7.
The following discussion will illustrate this.
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6.3.2. What are Variables Control Charts?

Sample
Variance

C, factor

Fractional
Factorials

If 2 isthe unknown variance of a probability distribution, then an
unbiased estimator of ¢¥2 is the sample variance

However, s, the sample standard deviation is not an unbiased estimator
of s. If the underlying distribution is normal, then s actually estimates
C,4 ¢T, Where ¢, is a constant that depends on the sample size n. This
constant is tabulated in most text books on statistical quality control
and may be calculated using

To compute this we need a non-integer factorial, which is defined for
n/2 as follows:

b 2\~ b 1
—l'=l=U=-1ll="2]|-|=
For example, let » = 2.5 =72 Then

[%] 1= (3.5)1=(3.5)(2.5)(1.5)(5)(1.77246) =11.632

With this definition the reader should have no problem verifying that
the ¢, factor for n=10is.9727.
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Mean and
standard
deviation of
the
estimators

Control
l[imits vs.
specifications

How many
samples are
needed?

So the mean or expected value of the sample standard deviation isc, ¢r.

The standard deviation of the sample standard deviation is

_ -
1?5—1?1 o

What arethe differences between control limits and specification
limits ?

Control Limits are used to determineif the processisin a state of
statistical control (i.e., is producing consistent output).

Specification Limits are used to determine if the product will function
in the intended fashion.

How many data points are needed to set up a control chart?

Shewhart gave the following rule of thumb:

"It has also been observed that a person would seldom if
ever be justified in concluding that a state of statistical
control of a given repetitive operation or production
process has been reached until he had obtained, under
presumably the same essential conditions, a sequence of
not less than twenty five samples of size four that arein
control."

It isimportant to note that control chart properties, such asfalse alarm
probabilities, are generally given under the assumption that the
parameters, such as f4 and ¥, are known. When the control limits are
not computed from alarge amount of data, the actual parameters might
be quite different from what is assumed (see, e.g., Quesenberry, 1993).

When do werecalculate control limits?
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When do we
recalculate
control
l[imits?

General
rules for
detecting out
of control or
non-random
Situaltions

Since a control chart "compares' the current performance of the
process characteristic to the past performance of this characteristic,
changing the control limits frequently would negate any useful ness.

So, only change your control limitsif you have avalid, compelling
reason for doing so. Some exampl es of reasons.

« When you have at least 30 more data points to add to the chart
and there have been no known changes to the process

- you get a better estimate of the variability

« |If amaor process change occurs and affects the way your
Process runs.

« |If aknown, preventable act changes the way the tool or process
would behave (power goes out, consumable is corrupted or bad
quality, etc.)

What arethe WECO rulesfor signaling " Out of Control" ?

WECO stands for Western Electric Company Rules

Any Point Above +3 Sigma
————————————————————————————————————————————— +3a LIMIT

2 Out of the Last 3 Points Above +2 Sigma
--------------------------------------------- +2a LIMIT

4 Out of the Last 5 Points Above +1 Sigma
--------------------------------------------- +1a LIMIT

8 Consecutive Points on This Side of Control Line
==== ==== ==—————=—=——=———== (CENTER LINE

8 Consecutive Points on This Side of Control Line
--------------------------------------------- -1 LIMIT

4 Out of the Last 5 Points Below - 1 Sigma
---------------------------------------------- -2 LIMIT

2 Out of the Last 3 Points Below -2 Sigma
————————————————————————————————————————————— -3a LIMIT

Any Point Below -3 Sigma

Trend Rules: 6 inarow trending up or down. 14 in arow alternating
up and down
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WECO rules
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WECO rules
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false alarms
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The WECO rules are based on probability. We know that, for anormal
distribution, the probability of encountering a point outside + 37 is
0.3%. Thisisarare event. Therefore, if we observe a point outside the
control limits, we conclude the process has shifted and is unstable.
Similarly, we can identify other eventsthat are equally rare and use
them as flags for instability. The probability of observing two points
out of three in arow between 2 and 37 and the probability of
observing four points out of fivein arow between 1 and 27 are also
about 0.3%.

Note: While the WECO rules increase a Shewhart chart sensitivity to
trends or driftsin the mean, there is a severe downside to adding the
WECO rulesto an ordinary Shewhart control chart that the user should
understand. When following the standard Shewhart "out of control*
rule (i.e., signal if and only if you see a point beyond the plus or minus
3 sigma control limits) you will have "false dlarms* every 371 points
on the average (see the description of Average Run Length or ARL on
the next page). Adding the WECO rules increases the frequency of
false alarms to about once in every 91.75 points, on the average (see
Champ and Woodall, 1987). The user has to decide whether this price
Isworth paying (some users add the WECO rules, but take them "less
seriously" in terms of the effort put into troubleshooting activities when
out of control signals occur).

With this background, the next page will describe how to construct
Shewhart variables control charts.
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6. Process or Product Monitoring and Control

6.3. Univariate and Multivariate Control Charts

6.3.2. What are Variables Control Charts?

6.3.2.1.Shewhart X bar and R and S Control

X-Bar and S
Shewhart
Control
Charts

Control
Limits for
X-Bar and S
Control
Charts

Charts

X-Bar and SCharts

We begin with xbar and s charts. We should use the s chart first to
determine if the distribution for the process characteristic is stable.

L et us consider the case where we have to estimate ¢¥ by analyzing past
data. Suppose we have m preliminary samples at our disposition, each of
sizen, and let 5 be the standard deviation of the ith sample. Then the

average of the m standard deviationsis

_ 12
S=—ZE‘-E-

FRE a1

We make use of the factor ¢, described on the previous page.

The statistic § f 4 1san unbiased estimator of 7. Therefore, the
parameters of the Schart would be

UCL =5+ 3~ 1 —c2
4

Clenter Line = &

ICL=5—-323/1—-¢&
4

Similarly, the parameters of the ¥ chart would be

5

UCL:E+3£4ﬁ
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6.3.2.1. Shewhart X bar and R and S Control Charts

Clenter Line = %

LCL =

5
E4V/T_1

Z, the "grand" mean is the average of all the observations.

]l

—3

It is often convenient to plot the xbar and s charts on one page.

X-Bar and R Control Charts

X-Bar and R If the sample sizeisrelatively small (say equal to or less than 10), we

control can use the range instead of the standard deviation of asampleto

charts construct control charts on xbar and the range, R. The range of a sample
Issimply the difference between the largest and smallest observation.

Thereisastatistical relationship (Patnaik, 1946) between the mean
range for datafrom anormal distribution and ¢F, the standard deviation
of that distribution. This relationship depends only on the sample size, n.
The mean of Risd, ¢, where the value of d, is also afunction of n. An

estimator of ¥ is therefore R/ds.

Armed with this background we can now develop the xbar and R control
chart.

Let Ry, Ry, ..., Ry, betherange of k samples. The average rangeis

ﬁ:RI -I-Rz:----I-RI:

Then an estimate of ¥ can be computed as

a =

5| =
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6.3.2.1. Shewhart X bar and R and S Control Charts

X-Bar So, if we use x (or agiven target) as an estimator of f and £ /d, asan
control estimator of ¢, then the parameters of the X chart are
charts
=} 3 —
UCL =2+ it

o/

Clenter Line = %

3
I/

The simplest way to describe the limitsis to define the factor
A, =3 ’,f l:dz y/ﬁ ) and the construction of the 5z becomes

UCL =7+ AR
Center Line = %
LCL =% — A,R

The factor A, depends only on n, and is tabled below.

LOL =% — R

TheR chart

R control This chart controls the process variability since the sample rangeis
charts related to the process standard deviation . The center line of the R chart
Isthe average range.

To compute the control limits we need an estimate of the true, but
unknown standard deviation W = R/ ¢r. This can be found from the
distribution of W = R/ ¢r (assuming that the items that we measure
follow anormal distribution). The standard deviation of Wisds, andisa

known function of the sample size, n. It istabulated in many textbooks
on statistical quality control.

Therefore since R = W ¢r, the standard deviation of Ris¢r g = d3 . But
since the true &r is unknown, we may estimate g by

ft

ds

As aresult, the parameters of the R chart with the customary 3-sigma
control limits are

&H :ﬂ-rﬂ
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It
o/

Center Line = R

UOL=R+30xr =R +3d;

It
I/

Aswas the case with the control chart parameters for the subgroup
averages, defining another set of factors will ease the computations,
namely:

D3 =1-3 d3/d2n'5 and D4 =1+3 d3 /d2n-5. Theﬁeyleld

Center Line = R
LCL = RD,

The factors Dz and D, depend only on n, and are tabled below.

Factorsfor Calculating Limitsfor XBAR and R Charts

|on | A | B | D

2 | 1.880 | 0 | 3.267
3 | 1.023 | 0 | 2575
4 | 0.729 | 0 | 2.282
[ 5 | 0577 | 0 | 2115
6 | 0.483 | 0 | 2.004
7 | 0.419 | 0.076 | 1.924
B 0.373 | 0.136 | 1.864
BEE 0.337 | 0.184 | 1.816
[ 10 | 0.308 | 0.223 | 1777

In general, the range approach is quite satisfactory for sample sizes up to
around 10. For larger sample sizes, using subgroup standard deviations
is preferable. For small sample sizes, the relative efficiency of using the
range approach as opposed to using standard deviations is shown in the
following table.
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Efficiency of
Rversus S

Waiting time
to signal
"out of
control"
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SEMATECH

n Relative
Efficiency

1.000
0.992
0.975
0.955
0.930
0.850

=
SBooarwnN

A typical sample sizeis 4 or 5, so not much islost by using the range for
such sample sizes,

Time To Detection or Average Run Length (ARL)

Two important questions when dealing with control charts are:

1. How often will there be false alarms where we look for an
assignable cause but nothing has changed?

2. How quickly will we detect certain kinds of systematic changes,
such as mean shifts?

The ARL tells us, for agiven situation, how long on the average we will
plot successive control charts points before we detect a point beyond the
control limits.

For an x-bar chart, with no change in the process, we wait on the
average 1/p points before a false alarm takes place, with p denoting the
probability of an observation plotting outside the control limits. For a
normal distribution, p = .0027 and the ARL is approximately 371.

A table comparing Shewhart x-bar chart ARL's to Cumulative Summ
(CUSUM) ARL's for various mean shiftsis given later in this section.

Thereisaso (currently) aweb site developed by Galit Shmueli that will

do ARL calculations interactively with the user, for Shewhart charts
with or without additional (Western Electric) rules added.
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6.3.2.2.Individuals Control Charts

Moving
range used
to derive
upper and
lower limits

Individuals
control
l[imits for an
observation

Samples are Individual M easurements

Control charts for individual measurements, e.g., the sasmple size = 1, use the
moving range of two successive observations to measure the process
variability.

The moving range is defined as
MF; = |F'fz' - ?fz'-1|

which is the absolute value of the first difference (e.g., the difference between
two consecutive data points) of the data. Analogous to the Shewhart control
chart, one can plot both the data (which are the individuals) and the moving
range.

For the control chart for individual measurements, the lines plotted are:

_ M A
Clenter Line = &
_ M A

where ¥ isthe average of all the individuals and Af fp is the average of all
the moving ranges of two observations. Keep in mind that either or both
averages may be replaced by a standard or target, if available. (Note that
1.128is the value of d, for n = 2).
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6.3.2.2. Individuals Control Charts

Example of The following example illustrates the control chart for individual

moving observations. A new process was studied in order to monitor flow rate. The
range first 10 batches resulted in
Batch Flowrate Moving Range
Number X MR

1 49.6

2 47.6 2.0

3 49.9 2.3

4 51.3 14

5 47.8 35

6 51.2 34

7 52.6 1.4

8 52.4 0.2

9 53.6 1.2

10 52.1 1.5

X=-5081 MHA=18778

Limits for Thisyields the parameters bel ow.

the moving MR 1.8778

range chart — ¥ = . - — 53.
UCL ‘T+31.128 2081 + 3 1198 20.8041
Clenter Line = ¥ = 3{.81

_ MR 1.8778 - o =

LCL =X — 3@ = 2081 —3 1.198 = 43.8159

Exampl e of

individuals

chart

The control chart is given below
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Control Chart for Individuals

a7 S

Ll

93 4

a1 4

Zenter

49

47 -

Ll

45 ! ! ! ! ! ! I ! ! ! 1

The processisin control, since none of the plotted points fall outside either
the UCL or LCL.

Alternative Note: Another way to construct the individuals chart is by using the standard

for deviation. Then we can obtain the chart from
constructing

individuals

control Ttas
chart

It is preferable to have the limits computed this way for the start of Phase 2.
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6.3.2.3. Cusum Control Charts
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6. Process or Product Monitoring and Control

6.3. Univariate and Multivariate Control Charts

6.3.2. What are Variables Control Charts?

6.3.2.3.Cusum Control Charts

CUSUM s
an efficient
alternative
to Shewhart
procedures

Definition of
cumulative
sum

V-Mask
used to
determine if
processis
out of
control

CUSUM charts, while not as intuitive and simple to operate as Shewhart
charts, have been shown to be more efficient in detecting small shiftsin
the mean of a process. In particular, analyzing ARL's for CUSUM

control charts shows that they are better than Shewhart control charts
when it is desired to detect shiftsin the mean that are 2 sigmaor less.

CUSUM works asfollows: Let us collect k samples, each of size n, and
compute the mean of each sample. Then the cumulative sum (CUSUM)
control chart isformed by plotting one of the following quantities:

S= 3 (%~ ) or S = — 3" (% )

ial TFe ial

Ea

against the sample number m, where Mo isthe estimate of the
in-control mean and ¥z is the known (or estimated) standard deviation
of the sample means. The choice of which of these two quantitiesis
plotted is usually determined by the statistical software package. In

either case, aslong as the process remains in control centered at Ha , the
cusum plot will show variation in arandom pattern centered about zero.
If the process mean shifts upward, the charted cusum points will
eventually drift upwards, and vice versaif the process mean decreases.

A visual procedure proposed by Barnard in 1959, known as the V Mask,
IS sometimes used to determine whether a processis out of control.
More often, the tabular form of the V-Mask is preferred. The tabular
form isillustrated later in this section.

A V-Mask is an overlay shapein theform of aV onitssidethat is
superimposed on the graph of the cumulative sums. The origin point of
the V-Mask (see diagram below) is placed on top of the latest
cumulative sum point and past points are examined to see if any fall
above or below the sides of the V. Aslong as all the previous pointslie
between the sides of the V, the processisin control. Otherwise (even if
one point lies outside) the process is suspected of being out of control.
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6.3.2.3. Cusum Control Charts

Sample
V-Mask
demonstrating
an out of
control
process

Inter pretation
of the V-Mask
on the plot

Vartex

h - is the rise In the arm
corresponding to the distance
{d) from origin to vertex

~ | ¥ -is the rise in tha
7 unlt am coresponding to
one sampling unit

In the diagram above, the V-Mask shows an out of control situation
because of the point that lies above the upper arm. By dliding the V
Mask backwards so that the origin point covers other cumulative sum
data points, we can determine the first point that signaled an out of
control situation. Thisis useful for diagnosing what might have caused
the process to go out of control.

From the diagram it is clear that the behavior of the V-Mask is
determined by the distance k (which is the slope of the lower arm) and
the rise distance h. These are the design parameters of the V-Mask.
Note that we could also specify d and the vertex angle (or, asis more
common in the literature, # = 1/2 the vertex angle) as the design
parameters, and we would end up with the same V-Mask.

In practice, designing and manually constructing aV-Mask isa
complicated procedure. A cusum spreadsheet style procedure shown
below is more practical, unless you have statistical software that
automates the V-Mask methodology. Before describing the spreadsheet
approach, we will look briefly at an example of a software V-Mask.
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JMP example  An example will be used to illustrate how to construct and apply a
of V-Mask V-Mask procedure using JMP. The 20 data points

324.925, 324.675, 324.725, 324.350, 325.350, 325.225, 324.125,
324.525, 325.225, 324.600, 324.625, 325.150, 328.325, 327.250,
327.825, 328.500, 326.675, 327.775, 326.875, 328.350

are each the average of samples of size 4 taken from a process that has
an estimated mean of 325. Based on process data, the process standard
deviation is 1.27 and therefore the sample means used in the cusum
procedure have a standard deviation of 1.27/4Y/2 = 0.635.

After inputting the 20 sample means and selecting "control charts’
from the pull down "Graph" menu, IMP displays a"Control Charts"
screen and a"CUSUM Charts" screen. Since each sample mean isa
separate "data point”, we choose a constant sample size of 1. We also
choose the option for atwo sided Cusum plot shown in terms of the
original data.

JMP allows us a choice of either designing via the method using h and
kor using an alpha and beta design approach. For the latter approach
we must specify

s rp theprobability of afalse alarm, i.e., concluding that a shift in
the process has occurred, whilein fact it did not

. ﬂ the the probability of not detecting that a shift in the process
mean has, in fact, occurred

- & (delta), the amount of shift in the process mean that we wish to

detect, expressed as amultiple of the standard deviation of the
data points (which are the sample means).

Note: Technically, alphaand beta are calculated in terms of one
sequential trial where we monitor S, until we have either an out of

control signal or S, returns to the starting point (and the monitoring
begins, in effect, al over again).

JMP menus In our example we choose an ¢x of 0.0027 (equivalent to the plus or
for inputting  minus 3 sigma criteria used in a standard Shewhart chart), and a /3 of
options to 0.01. Finally, we decide we want to quickly detect a shift aslarge as 1

the cusum sigma, which sets delta= 1. The screen below shows all the inputs.
procedure

http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc323.htm (3 of 7) [5/7/2002 4:27:58 PM]



6.3.2.3. Cusum Control Charts

Column 1

324.925 |

F24 675

324725 |

324 .33

32535 |

J25225

324125 |

324525

325225 |
3246 |
324 625 |

F2315

328.325 |
327.25 |

F2T 325

3285 |

J2E6 6735

327775 |

F2B TS

4 Control Charts

328.35 |

JMP output
from
CUSUM
procedure

Select Columns

Column 1

Chatt Type
CUSUR &

[+ Twvo sided
[V Data Units

Parameters

K Sigma
(* Alnha
H

Process

Sample Label

By

zample Size
(" Sample Grouped by Sample Lakbe|
(* Sample Size Conatant

Cast Columns into Roles

Column 1

Specify Stats | Delete Statz

Fnowyn Statistics for CUSUM Chart

| Column 1 |

Target 325
Defta 1
Shift .
Sigma 0635
Head Start

When we click on chart we see the V-Mask placed over the last data
point. The mask clearly indicates an out of control situation.
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6.3.2.3. Cusum Control Charts

|_Cuntru| Chart
| CUSUM of Column 1

25
E  20- J
=
[m}
2 15 <
=]
E 104
T3]
£ 5
fi
=
E 0O+
=
2
'5'I'I'I'I'I'I'I'I'I'I'I'
2 4 B & 10 12 14 16 185 20 22
Zample
Parameters
Target 325.0000
Detts 1.0000
=hift 06350
Sigma 06350
Head Start 0.0000
| ARL
ARL (Detta) 652922
ARL (0] 63.26935

We next "grab" the V-Mask and move it back to the first point that
indicated the process was out of control. Thisis point number 14, as

shown below.
JMP [ CUSUM of Column 1
CUSUM
chart after 23
moving c o
V-Mask to §
first out of U154
control E
point 2 107
£ 5-
B
=
=
o
'5"I'I'I'I'I'I'I'I'I'I'I'
2 4 B 8 1012 14 16 18 20 22
Sample
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Rule of
thumb for
choosing h
and k

A
Spreadsheet
approach to
cusum
monitoring

Example of
Spreadsheset
calculations

Note: A general rule of thumb (Montgomery) if one chooses to design

with the h and k approach, instead of the alpha and beta method
illustrated above, isto choose k to be half the delta shift (.5in our
example) and h to be around 4 or 5.

For more information on cusum chart design, see Woodall and Adams

(1993).

Tabular or Spreadsheet Form of the V-Mask

Most users of cusum procedures prefer tabular charts over the V-Mask.
The V-Mask is actually a carry-over of the pre-computer era. The
tabular method can be quickly implemented by standard spreadsheet
software.

To generate the tabular form we use the h and k parameters expressed in
the original data units. It is aso possible to use sigma units.

The following quantities are calculated:

Shi(i) = max(0, §(i-1) + % - fi, - K

So(i) = max(0, §(i-1) + FL,:, - k- %))

where §,(0) and §,(0) are 0. When either §,(i) or S(i) exceeds h, the
processis out of control.

We will construct a cusum tabular chart for the example described
above. For this example, the IMP parameter table gave h = 4.1959 and k
=.3175. Using these design values, the tabular form of the exampleis

i, h k
325 4.1959 0.3175
Increasein Decrease in
mean mean
Group x x-325 x-325-k S 325-k-x So Cusum

1 324.93-0.07 -0.39 0.00 -0.24 0.00 -0.007
2 324.68 -0.32 -0.64 0.00 0.01 0.01 -0.40
3 324.73 -0.27 -0.59 0.00 -0.04 0.00 -0.67
4 324.35-0.65 -0.97 0.00 0.33 0.33 -1.32
5 325.35 0.35 0.03 0.03 -0.67 0.00 -0.97
6 325.23 0.23 -0.09 0.00 -0.54 0.00 -0.75
7 324.13 -0.88 -1.19 0.00 0.56 0.56 -1.62
8 324.53-0.48 -0.79 0.00 0.16 0.72 -2.10
9 325.23 0.23 -0.09 0.00 0.54 0.17 -1.87
10 324.60 -0.40 -0.72 0.00 0.08 0.25 -2.27
11 324.63 -0.38 -0.69 0.00 0.06 0.31 -2.65
12 325.15 0.15 -0.17 0.00 0.47 0.00 -2.50
13 328.33 3.32 3.01 3.01 -3.64 0.00 0.83
14 327.25 2.25 1.93 4.94* -0.57 0.00 3.08
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6.3.2.3. Cusum Control Charts

15 327.83 2.82 2.51 7.45* -3.14 0.00 5.90
16 328.50 3.50 3.18 10.63* -3.82 0.00 9.40
17 326.68 1.68 1.36 11.99* -1.99 0.00 11.08
18 327.78 2.77 2.46 14.44* -3.09 0.00 13.85
19 326.88 1.88 1.56 16.00* -2.19 0.00 15.73
20 328.35 3.35 3.03 19.04* -3.67 0.00 19.08

* = out of control signa
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6.3.2.3.1. Cusum Average Run Length
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6.3. Univariate and Multivariate Control Charts

6.3.2. What are Variables Control Charts?

6.3.2.3. Cusum Control Charts

6.3.2.3.1.Cusum Average Run Length

The ARL of
CUSUM

h isdecision
l[imit

The Average Run Length of Cumulative Sum Control
Charts

The operation of obtaining samples to use with a cumulative sum (CUSUM)
control chart consists of taking samples of size n and plotting the cumulative
sums

Se=> (F—k) or S, =) (%F—)/o, (standardized)
=1 =1

versus the sample number r, where Z; is the sample mean and k is a
reference value.

In practice, k might be set equal to (“*:I + JF"’) / 2, where Mo s the estimated
in-control mean, which is sometimes known as the acceptable quality level,
and 4 isreferred to as the rgjectable quality level.

If the distance between a plotted point and the lowest previous point is equal
to or greater than h, one concludes that the process mean has shifted
(increased).

Hence, hisreferred to as the decision limit. Thus the sample size n,
reference value k, and decision limit h are the parameters required for
operating a one-sided CUSUM chart. If one has to control both positive and
negative deviations, asis usually the case, two one-sided charts are used,
with respective values ky Ky, (k1 > k) and respective decision limits h and

-h.
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6.3.2.3.1. Cusum Average Run Length

Sandardizing
shift in mean
and decision
limit

Determination
of the ARL,
given h and k

The shift in the mean can be expressed as ft - k. If we are dealing with
normally distributed measurements, we can standardize this shift by

_ ek
k= Fi-n

Similarly, the decision limit can be standardized by

k £ —hfulo

5:-5".'"*\,,!";

The average run length (ARL) at agiven quality level is the average number
of samples (subgroups) taken before an action signal isgiven. The
standardized parameters kg and hg together with the sample size n are usually

selected to yield approximate ARL's L and L, at acceptable and rejectable
quality levels f4, and fi, respectively. We would like to see ahigh ARL, L,
when the process is on target, (i.e. in control), and alow ARL, L4, when the
process mean shifts to an unsatisfactory level.

or [ge— E:]qua‘? s

In order to determine the parameters of a CUSUM chart, the acceptable and
rejectable quality levels along with the desired respective ARL ' sare usually
specified. The design parameters can then be obtained by a number of ways.
Unfortunately, the calculations of the ARL for CUSUM charts are quite
involved.

There are severa nomographs available from different sources that can be
utilized to find the ARL's when the standardized h and k are given. Some of
the nomographs solve the unpleasant integral equations that form the basis
of the exact solutions, using an approximation of Systems of Linear
Algebraic Equations (SLAE). This Handbook used a computer program that
furnished the required ARL's given the standardized h and k. An exampleis
given below:
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Example of
finding ARL's
given the
standardized
hand k

Using the
table

ARL ifal
sigma shift
has occurred

mean shift hﬁ fg Shewart
4 5

(k=.5) X
0 336 930 371.00
25 74.2 140 281.14
5 266 30.0 155.22
.75 13.3 170 81.22
1.00 838 104 44.0
1.50 475 5.75 14.97
2.00 334 401 6.30
2.50 262 311 3.24
3.00 219 257 2.00
4.00 1.71 201 1.19

If k = .5, then the shift of the mean (in multiples of the standard deviation of
the mean) is obtained by adding .5 to the first column. For example to detect
amean shift of 1 sigmaat h=4, the ARL = 8.38. (at first column entry of
5).

The last column of the table contains the ARL's for a Shewhart control chart
at selected mean shifts. The ARL for Shewhart = 1/p, where p isthe
probability for a point to fall outside established control limits. Thus, for 3
sigma control limits and assuming normalcy, the probability to exceed the
upper control limit = .00135 and to fall below the lower control limit isalso
.00135 and their sum =.0027. (These numbers come from standard normal
distribution tables or computer programs, setting z= 3). Thenthe ARL =
1/.0027 = 370.37. This says that when a processis in control one expects an
out-of-control signal (false alarm) each 371 runs.

When the means shifts up by 1 sigma, then the distance between the upper
control limit and the shifted mean is 2 sigma (instead of 3 7). Entering
normal distribution tables with z= 2 yields a probability of p =.02275to
exceed this value. The distance between the shifted mean and the lower limit
is now 4 sigma and the probability of ¥ <-4 isonly .000032 and can be
ignored. The ARL is1/.02275 = 43.96 .
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Shewhart is The conclusion can be drawn that the Shewhart chart is superior for

better for detecting large shifts and the CUSUM scheme is faster for small shifts. The
detecting break-even point is afunction of h, as the table shows.

large shifts,

CUSUM is

faster for

small shifts
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6.3.2.4. EWMA Control Charts

[

[HOME

ENGINEERING STATISTICS HANDEOOK

'TOOLS & AIDS [SEARCH [EACK NEXT|

6. Process or Product Monitoring and Control

6.3. Univariate and Multivariate Control Charts

6.3.2. What are Variables Control Charts?

6.3.2.4. EWMA Control Charts

EWMA
statistic

Comparison
of Shewhart
control
chart and
EVWMA
control
chart
techniques

Definition
of EWMA

Choice of
weighting
factor

The Exponentially Weighted Moving Average (EWMA) is a statistic for monitoring the
process that averages the datain away that givesless and less weight to data as they are
further removed in time.

For the Shewhart chart control technique, the decision regarding the state of control of

the process at any time, t, depends solely on the most recent measurement from the
process and, of course, the degree of 'trueness’ of the estimates of the control limits from
historical data. For the EWMA control technique, the decision depends on the EWMA
statistic, which is an exponentially weighted average of all prior data, including the
most recent measurement.

By the choice of weighting factor, A, the EWMA control procedure can be made
sensitive to asmall or gradual drift in the process, whereas the Shewhart control
procedure can only react when the last data point is outside a control limit.

The statistic that is calculated is:
EWMA, =AY+ (1-A) EWMA,; fort=1,2, ..,n.
where
« EWMA isthe mean of historical data (target)

o Y.istheobservation at timet
« nisthenumber of observations to be monitored including EWMA

« 0<A= 1lisaconstant that determinesthe depth of memory of the EWMA.
The equation is due to Roberts (1959).

The parameter A determines the rate at which 'older' data enter into the calculation of
the EWMA statistic. A value of A = 1 implies that only the most recent measurement
influences the EWMA (degrades to Shewhart chart). Thus, alarge value of A = 1 gives
more weight to recent data and less weight to older data; asmall value of A gives more
weight to older data. The value of A is usually set between 0.2 and 0.3 (Hunter) although
this choice is somewhat arbitrary. Lucas and Saccucci (1990) give tables that help the

user select A.
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6.3.2.4. EWMA Control Charts

Varianceof  The estimated variance of the EWMA statistic is approximately
EWMA Powma = (M(2- V) 2
StatIStIC . ewma ( ( )) - . . -
when t is not small, where sis the standard deviation calculated from the historical data
Definition The center line for the control chart is the target value or EWMA . The control limits
of control are:
limits for -
EWMA UCL = EWMA( + KSayma
UCL = EWMA - KSayma
where the factor k is either set equal 3 or chosen using the Lucas and Saccucci (1990)
tables. The data are assumed to be independent and these tables al so assume anormal
population.
Aswith all control procedures, the EWMA procedure depends on a database of
measurements that are truly representative of the process. Once the mean value and
standard deviation have been calculated from this database, the process can enter the
monitoring stage, provided the process was in control when the data were collected. If
not, then the usual Phase 1 work would have to be completed first.
Exampleof  Toillustrate the construction of an EWMA control chart, consider a process with the
calculation following parameters calculated from historical data:
of EWMA, = 50
parameters 5= 2.0539
for an
EWMA with A chosen to be 0.3 so that A / (2-4) = .3/ 1.7 = 0.1765 and the square root =
control 0.4201. The control limits are given by
chart UCL =50 + 3(0.4201)(2.0539) = 52.5884
LCL =50 - 3(0.4201) (2.0539) = 47.4115
Sample Consider the following data consisting of 20 points where 1 - 10 are on the top row
data from left to right and 11-20 are on the bottom row from left to right:
52.0 47.0 53.0 49.3 50.1 47.0 51.0 50.1 51.2 50.5
49.6 47.6 49.9 51.3 47.8 51.2 52.6 52.4 53.6 52.1
These data represent control measurements from the process which is to be monitored
using the EWMA control chart technique. The corresponding EWMA statistics that are
computed from this data set are:
EWMA 50. 60 49.52 50.56 50.18 50.16 49.21 49.75 49.85 50.26 50. 33
statisticsfor  50. 11 49. 36 49.52 50.05 49.38 49.92 50.73 51.23 51.94 51.99
sampledata  The control chart is shown bel ow.
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Sample | EWMA PLOT

EWMA

plot 55
54

45
e K
47 4 %
45 I I I I
5 10 15 20 25

Cbzervation Mumber

Yo X Data o—BEAMA Values
=—Lowwer Bl Limit Upper FWIVIA Limit

Interpretation  Thered x's are the raw data; the jagged line isthe EWMA statistic over
of EWMA time. The chart tells us that the processisin control because al
control chart ~ EWMA; lie between the control limits. However, there seemsto be a

trend upwards for the last 5 periods.
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6.3. Univariate and Multivariate Control Charts

6.3.3.What are Attributes Control Charts?

Attributes
data arise
when
classifying
or counting
observations

Types of
attribute
control
charts

The Shewhart control chart plots quality characteristics that can be
measured and expressed numerically. We measure weight, height,
position, thickness, etc. If we cannot represent a particular quality
characteristic numerically, or if it isimpractical to do so, we then often
resort to using a quality characteristic to sort or classify anitem that is
Inspected into one of two "buckets'.

An example of acommon quality characteristic classification would be
designating units as "conforming units" or nonconforming units'.
Another quality characteristic criteriawould be sorting units into "non
defective" and "defective" categories.. Quality characteristics of that
type are called attributes.

Note that there is a difference between "nonconforming to an
engineering specification" and "defective" -- a nonconforming unit may
function just fine and be, in fact, not defective at al, while a part can be
"in spec” and not fucntion as desired (i.e., be defective).

Examples of quality characteristics that are attributes are the number of
failuresin aproduction run, the proportion of malfunctioning wafersin
alot, the number of people eating in the cafeteria on a given day, etc.

Control charts dealing with the number of defects or nonconformities
are called c charts (for count).

Control charts dealing with the proportion or fraction of defective
product are called p charts (for proportion).

There is another chart which handles defects per unit, called the u chart
(for unit). This applies when we wish to work with the average number
of defects (or nonconformities) per unit of product.

For additional references, see Woodall (1997) which reviews papers
showing examples of attribute control charting, including examples
from semiconductor manufacturing such as those examining the spatial
depencence of defects
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6.3.3.1.Counts Control Charts

Defective
items vs
individual
defects

The literature differentiates between defect and defective, which isthe
same as differentiating between nonconformity and nonconforming
units. This may sound like splitting hairs, but in the interest of clarity
let'stry to unravel this man-made mystery.

Consider awafer with a number of chipson it. The wafer isreferred to
as an "item of a product”. The chip may be referred to as "a specific
point". There exist certain specifications for the wafers. When a
particular wafer (e.g., the item of the product) does not meet at least
one of the specifications, it is classified as a nonconforming item.
Furthermore, each chip, (e.g., the specific point) at which a
specification is not met becomes a defect or nonconformity.

So, a nonconforming or defective item contains at |east one defect or
nonconformity. It should be pointed out that a wafer can contain
several defects but still be classified as conforming. For example, the
defects may be located at noncritical positions on the wafer. If, on the
other hand, the number of the so-called "unimportant” defects
becomes alarmingly large, an investigation of the production of these
wafers is warranted.

Control chartsinvolving counts can be either for the total number of
nonconformities (defects) for the sample of inspected units, or for the
average number of defects per inspection unit.

http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc331.htm (1 of 6) [5/7/2002 4:27:59 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm

6.3.3.1. Counts Control Charts

Poisson
approximation
for numbers
or counts of
defects

[lustrate
Poisson
approximation
to binomial

L et us consider an assembled product such as a microcomputer. The
opportunity for the occurrence of any given defect may be quite large.
However, the probability of occurrence of a defect in any one
arbitrarily chosen spot is likely to be very small. In such acase, the
incidence of defects might be modeled by a Poisson distribution.
Actually, the Poisson distribution is an approximation of the binomial
distribution and applies well in this capacity according to the
following rule of thumb:

The sample size n should be equal to or larger than 20
and the probability of a single success, p, should be
smaller than or equal to .05. If n 2> 100, the
approximation is excellent if npisaso =< 10.

To illustrate the use of the Poisson distribution as an approximation of
abinomial distribution, consider the following comparison: Let p, the
probability of asingle successinn = 200 trias, be .025.

Find the probability of exactly 3 successes. If we assume that p
remains constant then the solution follows the binomial distribution
rules, that is:

” ooy
px)=| |p(1-py=| " | 025°.975% =01399995
&

By the Poisson approximation we have

¢ = (200)(.025)

and
-
plz) = 4 = 3 ={.1403739
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6.3.3.1. Counts Control Charts

The inspection
unit

Control charts
for counts,
using the
Poisson
distribution

Control chart
example using
counts

Before the control chart parameters are defined there is one more
definition: the inspection unit. We shall count the number of defects
that occur in a so-called inspection unit. More often than not, an
inspection unit isasingle unit or item of product; for example, a
wafer. However, sometimes the inspection unit could consist of five
wafers, or ten wafers and so on. The size of the inspection units may
depend on the recording facility, measuring equipment, operators, etc.

Suppose that defects occur in a given inspection unit according to the
Poisson distribution, with parameter ¢ (often denoted by np or the
greek letter }). In other words

e "
!

plz) =

where x is the number of defects and ¢ > 0O is the parameter of the
Poisson distribution. It is known that both the mean and the variance
of thisdistribution are equal to c. Then the k-sigma control chart is

UCL =c+ kJe
CenterLine = ¢

LCL =e— ke

If the LCL comes out negative, then there is no lower control limit.
This control scheme assumes that a standard value for cis available. If
thisis not the case then c may be estimated as the average of the
number of defectsin a preliminary sample of inspection units, call it
7 Usually kis set to 3 by many practioners.

An example may help to illustrate the construction of control limits for
counts data. We are inspecting 25 successive wafers, each containing
100 chips. Here the wafer is the inspection unit. The observed number
of defects are

Wafer Number Wafer Number
Number of Defects  Number of Defects

1 16 14 16
2 14 15 15
3 28 16 13
4 16 17 14
5 12 18 16
6 20 19 11
7 10 20 20
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8
9
10
11
12
13

12
10
17
19
17
14

21
22
23
24
25

11
19
16
31
13

From this table we have

total number of defects 400

— = 1
“~ Yotal number of samples 25 0
UCL =43/ =16 + 24/16 = 28
LCL = ¢ — ke
Sample Control Chart for Counts
counts
control
chart 5%
JU A I'. h
25
20 1
154 \JA "V“v\f\ !
5 \/{
10 - \/ \\/
5 .
“ I I 1 I I 1 I I I I I I I I 1 I I 1 I I I I 1

1 3 35 7 9 11 13 15 17 1» 21 23 25

Transforming Poisson Data
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Normal
approximation
to Poisson is
adequate
when the
mean of the
Poisson is at
least 5

Transforming
count data
into
approximately
normal data

6.3.3.1. Counts Control Charts

We have seen that the 3 sigma limitsfor a c chart, where ¢ represents
the number of nonconformities, are given by

F+ 3z

where it is assumed that the normal approximation to the Poisson
distribution holds, hence the symmetry of the control limits. It is
shown in the literature that the normal approximation to the Poisson is
adequate when the mean of the Poisson is at least 5. When applied to
the ¢ chart thisimplies that the mean of the defects should be at least
5. This requirement will often be met in practice, but still, when the
mean is smaller than 9 (solving the above equation) there will be no
lower control limit.

L et the mean be 10. Then the lower control limit = 0.513. However,
P(c = 0) =.000045, using the Poisson formula. Thisis only 1/30 of the
assumed area of .00135. So one hasto raise the lower limit so as to get
as close as possible to .00135. From Poisson tables or computer
software we find that P(1) = .0005 and P(2) = .0027, so the lower limit
should actually be 2 or 3.

To avoid this type of problem, we may resort to a transformation that
makes the transformed data match the normal distribution better. One
such transformation described by Ryan (2000) is

Y =2k
which is, for alarge sample, approximately normally distributed with
mean = Zﬁ and variace = 1, where j is the mean of the Poisson

distribution.

Similar transformations have been proposed by Anscombe (1948) and
Freeman and Tukey (1950). When applied to a c chart these are

y1 =2/c+3/8 and p =+ et++e+1

The repspective control limits are

§+3, 7 +3, andp+3
While using transformations may result in meaningful control limits,
one has to bear in mind that the user is now working with dataon a
different scale than the original measurements. There is another way
to remedy the problem of symmetric limits applied to non symmetric

cases, and that is to use probability limits. These can be obtained from
tables given by Molina (1973). This allows the user to work with data
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Warning for
highly skewed
distributions
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on the original scale, but they require special tablesto obtain the
limits. Of course, software might be used instead.

Note: In generdl, it is not agood ideato use 3-sigmalimitsfor
distributions that are highly skewed (see Ryan and Schwertman (1997)

for more about the possibly extreme consequences of doing this).
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pisthe
fraction
defectivein
alot or
population

The
binomial
distribution
model for
number of
defectivesin
asample

The proportion or fraction nonconforming (defective) in a population is
defined as the ratio of the number of nhonconforming itemsin the
population to the total number of itemsin that population. The item
under consideration may have one or more quality characteristics that
are inspected simultaneousdly. If at least one of the characteristics does
not conform to standard, the item is classified as nonconforming.

The fraction or proportion can be expressed as a decimal, or, when
multiplied by 100, as a percent. The underlying statistical principles for
acontrol chart for proportion nonconforming are based on the binomial
distribution.

L et us suppose that the production process operates in a stable manner,
such that the probability that a given unit will not conform to
specificationsis p. Furthermore, we assume that successive units
produced are independent. Under these conditions, each unit that is
produced is arealization of a Bernoulli random variable with parameter
p. If arandom sample of n units of product is selected and if D isthe
number of units that are nonconforming, the D follows a binomial

distribution with parameters n and p
X » H—¥
p{D=x}=( Jp (l—p] x=01--- .2
x

The mean of D is np and the variance is np(1-p). The sample proportion
nonconforming is the ratio of the number of nonconforming unitsin the
sample, D, to the sample size n,

b

PZE
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6.3.3.2. Proportions Control Charts

p control
charts for
lot
proportion
defective

The mean and variance of this estimator are

=P
and

2 P(l — P)
Og = —————
n

This background is sufficient to develop the control chart for proportion
or fraction nonconforming. The chart is called the p-chart.

If the true fraction conforming p is known (or a standard value is given),
then the center line and control limits of the fraction nonconforming
control chart is

1_
UﬂL:erBMQ

CenterLine = p

1 —
Y =)

When the process fraction (proportion) p is not known, it must be
estimated from the available data. Thisis accomplished by selecting m
preliminary samples, each of size n. If there are D; defectivesin sample

I, the fraction nonconforming in samplei is
. D —i
B = 1
and the average of these individuals sample fractionsis
5= YD 3L P
mn m
The P isused instead of p in the control chart setup.

i=1,2 ..m
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Example of A numerical example will now be given to illustrate the above
a p-chart mentioned principles. The location of chips on awafer is measured on
30 wafers.

On each wafer 50 chips are measured and a defective is defined
whenever a misregistration, in terms of horizontal and/or vertical
distances from the center, isrecorded. The results are

Sample Fraction Sample Fraction Sample Fraction
Number Defectives Number Defectives Number Defectives

1 24 11 10 21 40
2 .30 12 12 22 .36
3 16 13 34 23 48
4 20 14 24 24 .30
5 .08 15 44 25 18
6 14 16 16 26 24
7 32 17 20 27 14
8 A8 18 10 28 .26
9 .28 19 .26 29 18
10 20 20 22 30 12
Sample The corresponding control chart is given below:
WGRTANETE Contral Chart for Proportions
control
chart
06 -
045 -
0.4 - 4 ‘A' UCL= 4102
0.3 S
A l\ i) ¥ Centers 2313
I:l.z _ v N
01 4 W
LCL= 0524
D rrrrrrrrrrrr1rrrrrrrrrrr1rr1r 111117 1T 1T 1T1TT1T71
NIST : :
0 TOOLS & AIDS SEARCH BACK MNEXT
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6. Process or Product Monitoring and Control

6.3. Univariate and Multivariate Control Charts

6.3.4.What are Multivariate Control Charts?

Multivariate
control
charts and
Hotelling's
T2 statistic

Multivariate
control
charts now
more
accessible

Hotelling
chartsfor
both means
and
dispersion

Hotelling
mean and
dispersion
control
charts

It isafact of life that most data are naturally multivariate. Hotelling in
1947 introduced a statistic which uniquely lendsitself to plotting
multivariate observations. This statistic, appropriately named Hotelling's
T2, isascalar that combines information from the dispersion and mean of
several variables. Due to the fact that computations are laborious and
fairly complex and require some knowledge of matrix algebra, acceptance
of multivariate control charts by industry was slow and hesitant.

Nowadays, modern computers in general and the PC in particular have
made complex calculations accessible and during the last decade,
multivariate control charts were given more attention. In fact, the
multivariate charts which display the Hotelling T 2 statistic became so
popular that they sometimes are called Shewhart charts as well (e.g.,
Crosier, 1988), athough Shewhart had nothing to do with them.

As in the univariate case, when data are grouped, the T 2 chart can be
paired with a chart that displays a measure of variability within the
subgroups for all the analyzed characteristics. The combined T 2 and T 2
(dispersion) charts are thus a multivariate counterpart of the univariate
Xbar and S (or Xbar and R) charts.

An example of aHotelling T2 and T 24 pair of chartsis given below:
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6.3.4. What are Multivariate Control Charts?

T %quare For keans

T Square For Dispersion

Interpretation  Each chart represents 14 consecutive measurements on the means of four

of sam_pl e variables. The T 2 chart for means indicates an out-of-control state for
Hotelling groups 1,2 and 9-11. The T 2 chart for dispersions indicate that groups
gﬁgﬁrtgl 10, 13 and 14 are also out of control. The interpretation is that the

multivariate system is suspect. To find an assignable cause, one hasto
resort to the individual univariate control charts or some other univariate
procedure that should accompany this multivariate chart.

Additional For more details and examples see the next page and also Tutorials,
discussion section 5, subsections 4.3, 4.3.1 and 4.3.2. An introduction to Elements of

multivariate analysisis aso given in the Tutorials.
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6.3.4. What are Multivariate Control Charts?

6.3.4.1. Hotelling Control Charts

Definition of
Hotelling's
T2
"distance"
statistic

T2 readily
graphable

The Hotelling T 2 distance is a measure that accounts for the covariance
structure of a multivariate normal distribution. It was proposed by

Harold Hotelling in 1947 and is called Hotelling T 2. It may be thought
of asthe multivariate counterpart of the Student's-t statistic.

The T 2 distance is a constant multiplied by a quadratic form. This
quadratic form is obtained by multiplying the following three quantities:

1. Thevector of deviations between the observations
and atarget vector m, which is expressed by (X-m)',

2. Theinverse of the covariance matrix, S,
3. Thevector of deviations, (X-m).

It should be mentioned that for independent variables, the covariance
matrix is adiagonal matrix and T 2 becomes proportional to the sum of
squared standardized variables.

In general, the higher the T 2 value, the more distant is the observation
from the target. The formulafor computing the T 2is;

T =¢(X-m )87 (X-m)

The constant c is the sample size from which the covariance matrix was
estimated.

The T 2 distances lend themselves readily to graphical displaysand asa
result the T 2-chart is the most popular among the multivariate control
charts.

Estimation of the Mean and Covariance M atrix
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Mean and
Covariance
matrices

Additional
discussion
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Let X4,...X,, be n p-dimensional vectors of observations that are sampled
independently from Ny(m, %) with p < n-1. The observed mean vector

X and the sample dispersion matrix
1 < = —f
$ = (%-X)(%,-X)
M _1 im]
are the unbiased estimators of m and ¥ respectively.
See Tutorials (section 5), subsections 4.3, 4.3.1 and 4.3.2 for more

details and examples. An introduction to Elements of multivariate
analysisis aso given in the Tutorials.
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6. Process or Product Monitoring and Control

6.3. Univariate and Multivariate Control Charts

6.3.4. What are Multivariate Control Charts?

6.3.4.2.Principal Components Control

Problems
with T2
charts

Run
univariate
charts along
with the
multivariate
ones

Another way
to monitor
multivariate
data:
Principal
Components
control
charts

Charts

Although the T 2 chart is the most popular, easiest to use and interpret
method for handling multivariate process data, and is beginning to be
widely accepted by quality engineers and operators, it is not a panacea.
First, unlike the univariate case, the scale of the values displayed on the
chart is not related to the scales of any of the monitored variables.
Secondly, when the T 2 statistics exceeds the upper control limit

(UCL), the user does not know which particular variable(s) caused the
out-of-control signal.

With respect to scaling, we strongly advise to run individual univariate
charts in tandem with the multivariate chart. Thiswill also help in
honing in on the culprit(s) that might have caused the signal. However,
individual univariate charts cannot explain situations that are aresult of
some problems in the covariance or correlation between the variables.
Thisiswhy adispersion chart must also be used.

Another way to analyze the dataisto use principal components. For
each multivariate measurement (or observation), the principal
components are linear combinations of the standardized p variables (to
standardize subtract their respective targets and divide by their
standard deviations). The principal components have two important
advantages:

1. the new variables are uncorrelated (or almost)

2. very often, afew (sometimes 1 or 2) principal components may
capture most of the variability in the data so that we do not have
to use al of the p principal components for control.

http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc342.htm (1 of 2) [5/7/2002 4:28:01 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm

6.3.4.2. Principal Components Control Charts

Eigenvalues

Additional
discussion
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Unfortunately, there is one big disadvantage: The identity of the
original variablesislost! However, in some cases the specific linear
combinations corresponding to the principal components with the
largest elgenvalues may yield meaningful measurement units. What is

being used in control charts are the principal factors.

A principal factor isthe principal component divided by the square
root of its eigenvalue.

More details and examples are given in the Tutorials (section 5).
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6.3. Univariate and Multivariate Control Charts

6.3.4. What are Multivariate Control Charts?

6.3.4.3. Multivariate EWMA Charts

Univariate
EWMA moded

Multivariate
EWMA mode

[llustration of
multivariate
EWMA

Multivariate EWMA Control Chart

The model for aunivariate EWMA chart is given by:
E.;:,Uf.;ﬂ—l[l—}ujﬂ;_l izl?g?...?ﬂ
where Z; istheith EWMA, X; is the the ith observation, Z; isthe

average from the historical data, and 0 < } < 1.

In the multivariate case, one can extend this formulato

E,; — _t"'LXi + (1 — i"'i.)gi_l
where Z; isthe ith EWMA vector, X; isthe the ith observation vector i
=1, 2, ..., n, Zyisthe vector of variable values from the historical data,

A isthediag( 31, A2, - }p), @nd pisthe number of variables, that is,
the number of elements in each vector.

The following illustration may clarify this. There are p variables and
each variable contains n observations. The input data matrix looks like:

11 "t le
le "szz sz
"If;'zl "Eﬂ "I{;'zp

The quantity to be plotted on the control chart is
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6.3.4.3. Multivariate EWMA Charts

Smplification

Further
simplification

T’ =Z,5]'Z,

It has been shown (Lowry et. a., 1992) that the (k) element of the
covariance matrix of theith EWMA, 25, is
1—(1— M) (1 — A
Ealk )= A [

where T # is the (k,)th element of ¥;, the covariance matrix of the X's.

If A1 =32 =-. = }p) = ) thenthe above expression simplifiesto
A 2
Balk,) = g1 -1 -N7[E

where ¥ isthe covariance matrix of the input data.

There is afurther smplification. When i becomes large, the covariance
matrix may be expressed as:

The question is"What is large?'. When we examine the formulawith
the 2i in it, we observe that when 2i becomes sufficiently large such
that (1 - X 2 becomes almost zero, then we can use the simplified
formula
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Table for
selected
values of
and i

Smplified
formuala not
required

MEWMA
computer
output
for the
Lowry
data

The following table gives the values of (1-}) 2 for selected values of }
andi.
2i
1-% 4 6 8 10 12 20 30 40 50

656 .531 .430 .349 .282 .122 .042 .015 .005
410 .262 .168 .107 .069 .012 .001 .000 .000
240 .118 .058 .028 .014 .001 .000 .000 .000
130 .047 .017 .006 .002 .000 .000 .000 .000
063 .016 .004 .001 .000 .000 .000 .000 .000
026 .004 .001 .000 .000 .000 .000 .000 .000
.008 .001 .000 .000 .000 .000 .000 .000 .000
.002 .000 .000 .000 .000 .000 .000 .000 .000
.000 .000 .000 .000 .000 .000 .000 .000 .000

PMwWhOoN®O

It should be pointed out that a well meaning computer program does
not have to adhere to the simplified formula, and potential inaccuracies
for low valuesfor A and i can thus be avoided.

Here is an example of the application of an MEWMA control chart. To
faciltate comparison with existing literature, we used data from Lowry et al.
The data were simulated from a bivariate normal distribution with unit
variances and a correlation coefficient of 0.5. The value for | = .10 and the
valuesfor T 2 were obtained by the equation given above. The covariance of

the MEWMA vectors was obtained by using the non-simplified equation. That
means that for each MEWMA control statistic, the computer computed a
covariance matrix, wherei =1, 2, ...10. The results of the computer routine
are:

R I I I S S I S I S I S S I I I S S I S S I S S S S I S S S S S S S S S S S S I S I I I S I S S S S

* Multi-Vari ate EWVMA Control Chart *

kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkikkhkkkk*%x

DATA SERI ES MEWA Vect or VEVWA
1 2 1 2 STATI STI C
-1. 190 0. 590 -0. 119 0. 059 2.1886
0.120 0. 900 -0. 095 0. 143 2. 0697
-1. 690 0. 400 - 0. 255 0. 169 4. 8365
0. 300 0. 460 - 0. 199 0.198 3. 4158
0. 890 -0. 750 -0. 090 0. 103 0. 7089
0. 820 0. 980 0. 001 0. 191 0. 9268
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6.3.4.3. Multivariate EWMA Charts

- 0. 300 2. 280
0. 630 1. 750
1. 560 1. 580
1. 460 3. 050

VEC XBAR
1 . 260
2 1.124

The UCL

-0. 029 0. 400
0. 037 0. 535
0. 189 0. 639
0. 316 0. 880

MSE Landa

1.200 0. 100

1.774 0. 100

5.938 for = .05

The following is the plot of the above MEWMA.

Plot of MEWDNMNLA's

4.0018
6. 1657
7.8554

14. 4158

Sample

MEWMA

plot
16
14 -
12 -
10 -
g -
& 4
4 -
2
0
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6.4. Introduction to Time Series Analysis

P ENGINEERING STATISTICS HANDBOOK

[HOME 'TOOLS & AIDS [SEARCH [BACK NEXT|

6. Process or Product Monitoring and Control

6.4.Introduction to Time Series Analysis

Time series Time series data often arise when monitoring industrial processes or

methods tracking corporate business metrics. The essential difference between
take into modeling data via time series methods or using the process monitoring
account methods discussed earlier in this chapter is the following:

possible Time series analysis accounts for the fact that data points
internal taken over time may have internal structure (such as

Structure in autocorrelation, trend or seasonal variation) that should be

the data accounted for.

This section will give abrief overview of some of the more widely used
techniquesin the rich and rapidly growing field of time series modeling
and analysis.

Contentsfor  Areas covered are:
this section 1. Definitions, Applications and Techniques
2. What are Moving Average or Smoothing
Techniques?
1. Single Moving Average

2. Centered Moving Average
3. What is Exponential Smoothing?
1. Single Exponential Smoothing

2. Forecasting with Single Exponential
Smoothing

3. Double Exponential Smoothing

4. Forecasting with Double Exponential
Smoothing

5. Triple Exponential Smoothing

6. Example of Triple Exponential Smoothing

7. Exponential Smoothing Summary
4. Univariate Time Series Models
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6.4. Introduction to Time Series Analysis
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Sample Data Sets
Stationarity

Seasonality
Common Approaches

Box-Jenkins Approach
Box-Jenkins Model |dentification
Box-Jenkins Model Estimation
Box-Jenkins Model Validation

SEMPLOT Sample Output for a Box-Jenkins
Model Analysis

SEMPLOT Sample Output for a Box-Jenkins
Model Analysis with Seasonality

5. Multivariate Time Series Models

1.

Example of Multivariate Time Series Analysis
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6.4.1. Definitions, Applications and Techniquess
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis

6.4.1.Definitions, Applications and
Techniquess

Definition Definition of Time Series. An ordered sequence of values of a variable
at equally spaced time intervals.

Time series Applications: The usage of time series modelsis twofold:

occur « Obtain an understanding of the underlying forces and structure
frﬁquently that produced the observed data

Y;Oi?n o » Fitamodel and proceed to forecasting, monitoring or even
s feedback and feedforward control.

data Time Series Analysisis used for many applications such as:

« Economic Forecasting
« Sales Forecasting
« Budgetary Anaysis
o Stock Market Analysis
« Yield Projections
o Process and Quality Control
« Inventory Studies
« Workload Projections
« Utility Studies
o Census Analysis

and many, many more...
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6.4.1. Definitions, Applications and Techniquess

Thereare
many
methods
used to
model and
forecast
time series

NIST
SEMATECH

Techniques: Thefitting of time series models can be an ambitious
undertaking. There are many methods of model fitting including the
following:

o« Box-Jenkins ARIMA models
o Box-Jenkins Multivariate Models
o Holt-Winters Exponential Smoothing (single, double, triple)

o Multivariate Autoregression

The user's application and preference will decide the selection of the
appropriate technique. It is beyond the realm and intention of the
authors of this handbook to cover all these methods. The overview
presented here will start by looking at some basic smoothing techniques:

« Averaging Methods
« Exponential Smoothing Techniques.

Later in this section we will discuss the Box-Jenkins modeling methods
and Multivariate Time Series.
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6. Process or Product Monitoring and Control

6.4. Introduction to Time Series Analysis

6.4.2.What are Moving Average or
Smoothing Techniques?

Smoothing
data
removes
random
variation
and shows
trends and
cyclic
components

Taking
averagesis
the simplest
way to
smooth data

Inherent in the collection of data taken over time is some form of
random variation. There exist methods for reducing of canceling the
effect due to random variation. An often used technique in industry is
"smoothing". This technique, when properly applied, reveals more
clearly the underlying trend, seasonal and cyclic components.

There are two distinct groups of smoothing methods
« Averaging Methods
« Exponentia Smoothing Methods

We will first investigate some averaging methods, such as the "simple"
average of all past data.

A manager of a warehouse wants to know how much atypical supplier
deliversin 1000 dollar units. He/she takes a sample of 12 suppliers, at
random, obtaining the following results:

Supplier  Amount  Supplier ~ Amount
1 9 7 11
2 8 8 7
3 9 9 13
4 12 10 9
5 9 11 11
6 12 12 10

The computed mean or average of the data = 10. The manager decides
to use this as the estimate for expenditure of a typical supplier.

|s thisagood or bad estimate?
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6.4.2. What are Moving Average or Smoothing Techniques?

Mean
squared
error isa
way to judge
how good a
model is

MSE results
for example

Table of
MSE results
for example
using
different
estimates

We shall compute the "mean squared error":

« The"error" = true amount spent minus the estimated amount.
The "error squared" isthe error above, squared.

o The"SSE" isthe sum of the squared errors.

e The"MSE" isthe Mean of the squared errors.

Theresults are:
Error and Squared Errors

Theestimate= 10

Error

Supplier  $ Error Squared
1 9 -1 1
2 8 -2 4
3 9 -1 1
4 12 2 4
5 9 -1 1
6 12 2 4
7 11 1 1
8 7 -3 9
9 13 3 9

10 9 -1 1
11 11 1 1
12 10 0 0

The SSE = 36 and the MSE = 36/12 = 3.

So how good was the estimator for the amount spent for each supplier?
L et us compare the estimate (10) with the following estimates: 7, 9, and
12. That is, we estimate that each supplier will spend $7, or $9 or $12.
Performing the same calculations we arrive at:

Estimator 7 9 10 12

SSE 144 48 36 84
M SE 12 4 3 7

The estimator with the smallest MSE is the best. It can be shown
mathematically that the estimator that minimizes the M SE for a set of
random data is the mean.
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Table Next we will examine the mean to see how well it predicts net income

showing over time.

squared _ _

error for the The next table gives the income before taxes of a PC manufacturer

mean for between 1985 and 1994.

sample data Squared
Year  $(millions) Mean Error Error

1985 46.163 48.776 -2.613 6.828
1986 46.998 48.776 -1.778 3.161
1987 47.816 48.776 -0.960 0.922
1988 48.311 48.776 -0.465 0.216
1989 48.758 48.776 -0.018 0.000
1990 49.164 48.776 0.388 0.151
1991 49.548 48.776 0.772 0.596
1992 48.915 48.776 1.139 1.297
1993 50.315 48.776 1.539 2.369
1994 50.768 48.776 1.992 3.968

The MSE = 1.9508

Themeanis  The question arises. can we use the mean to forecast income if we

not a good suspect atrend? A look at the graph below shows clearly that we should
estimator not do this.

when there
aretrends £

a0 H

49 A

48

== |ncamme

N ean

47 -

45
45

44 -

43 I I I I I I I I 1
1965 1987 1989 1991 1993
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6.4.2. What are Moving Average or Smoothing Techniques?

Average In summary, we state that

weighs all 1. The"simple" average or mean of all past observationsisonly a
past useful estimate for forecasting when there are no trends. If there
obser ?’at' ons are trends, use different estimates that take the trend into account.
el 2. The average "weighs" all past observations equally. For example,

the average of the values 3, 4, 5 is 4. We know, of course, that an
average is computed by adding all the values and dividing the
sum by the number of values. Another way of computing the
average is by adding each value divided by the number of values,
or

3/3+4/3+5/3=1+1.3333 + 1.6667 = 4.
The multiplier 1/3 is called the weight. In general:

_ 1 & 1 1 1
=28 (s o ()

n

1
The (—) are the weights and of course they sumto 1.
n

NIST
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6.4.2.1. Single Moving Average
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6. Process or Product Monitoring and Control

6.4. Introduction to Time Series Analysis

6.4.2. What are Moving Average or Smoothing Techniques?

6.4.2.1.Single Moving Average

Taking a
moving
averageisa
smoothing
process

Moving
average
example

An alternative way to summarize the past datais to compute the mean of
successive smaller sets of numbers of past data as follows:

Recall the set of numbers 9, 8, 9, 12,9, 12, 11, 7, 13, 9, 11,

10 which were the dollar amount of 12 suppliers selected at

random. Let us set M, the size of the "smaller set" equal to
3. Then the average of the first 3 numbersis. (9+8+9)/
3=28.667.

Thisiscalled "smoothing” (i.e., some form of averaging). This
smoothing process is continued by advancing one period and cal culating
the next average of three numbers, dropping the first number.

The next table summarizes the process, which is referred to as Moving
Averaging. The general expression for the moving averageis

M= [ X+ Xeg oo+ Xenwal /N

Results of Moving Average
Supplier $ MA Error Error squared

1 9

2 8

3 9 8.667 0.333 0.111
4 12 9.667 2.333 5.444
5 9 10.000-1.000 1.000
6 1211.000 1.000 1.000
7  1110.667 0.333 0.111
8 7 10.000 -3.000 9.000
9 1310.333 2.667 7.111
10 9 9.667 -0.667 0.444
11 1111000 O 0
12 1010.000 O 0

The MSE = 2.018 as compared to 3 in the previous case.
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.2. What are Moving Average or Smoothing Techniques?

6.4.2.2.Centered Moving Average

When In the previous example we computed the average of the first 3 time
computinga  periods and placed it next to period 3. We could have placed the average
running in the middle of the time interval of three periods, that is, next to period
moving 2. Thisworks well with odd time periods, but not so good for even time
average, periods. So where would we place the first moving average when M =
placing the 4?
averagein
the middle Technically, the Moving Average would fall at t = 2.5, 3.5, ...
timeperiod 14 4y0id this problem we smooth the MA's using M = 2. Thus we
Makes Sense gy noth the smoothed values
If we The following table shows the results using M = 4.
average an :
even number Interim Steps
of terms, we Period Value MA Centered
need to
smooth the 1 9
smoothed L5
values 2 8
2.5 9.5
3 9 9.5
35 9.5
4 12 10.0
4.5 10.5
5 9 10.750
55 11.0
6 12
6.5
7 9
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6.4.2.2. Centered Moving Average

Final table Thisisthefina table:
Period Value Centered MA

1 9

8

9 9.5
12 10.0
9 10.75
12

11

~NOo ok W

Double Moving Averagesfor a Linear Trend Process

Moving Unfortunately, neither the mean of all data nor the moving average of
averages the most recent M values, when used as forecasts for the next period, are
are still not able to cope with a significant trend.
ﬁglnedfg There exists a variation on the MA procedure that often does a better job
significant of handling trend. It is called Double Moving Averages for a Linear
trendswhen  1rend Process. It calculates a second moving average from the original
forecasting moving average, using the same value for M. As soon as both single and
double moving averages are available, a computer routine uses these
averages to compute a slope and intercept, and then forecasts one or
more periods ahead.
NIST : :
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis

6.4.3.What is Exponential Smoothing?

Exponential Thisisavery popular scheme to produce a smoothed Time Series.
smoothing Whereasin Single Moving Averages the past observations are
schemesweight  weighted equally, Exponential Smoothing assigns exponentially
past decreasing weights as the observation get older.

observations : : . :
using In other words, recent observations are given relatively more weight

in forecasting than the older observations.

exponentially

decreasing In the case of moving averages, the weights assigned to the

weights observations are the same and are equal to 1/N. In exponential
smoothing, however, there are one or more smoothing parameters to
be determined (or estimated) and these choices determine the weights
assigned to the observations.
Single, double and triple Exponential Smoothing will be described in
this section.
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6. Process or Product Monitoring and Control

6.4. Introduction to Time Series Analysis

6.4.3. What is Exponential Smoothing?

6.4.3.1.Single Exponential Smoothing

Exponential
smoothing
weights past
observations
with
exponentially
decreasing
weights to
forecast
future values

This smoothing and forecasting scheme begins by setting S, to y;,
where § stands for the smoothed observation or EWMA, and y stands

for the original observation. The subscripts refer to the time periods, 1,
2, ..., n. For the third period, S3 =tx y, + (1-tX) S,. and so on. Thereis

no S;; the smoothed series starts with the smoothed version of the
second observation.

For any time period t, the smoothed value S; is found by computing

S=ay +{1-a)8, lwa=l (23

This the basic equation of exponential smoothing and the constant or
parameter ¢x is called the smoothing constant.

Note: Thereis an aternative approach to exponential smoothing that
replaces y;.; in the basic equation with y;, the current observation. That

formulation, due to Roberts (1959) is described in the section on
EWMA control charts. The formulation here follows Hunter (1986).

Setting thefirst EWMA term
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Thefirst
forecast is
very
important

Expand
basic
equation

Summation
formula for
basic
equation

Expanded
equation for
Sy

6.4.3.1. Single Exponential Smoothing

Theinitial EWMA plays an important role in computing all the
subsequent EWMA''s. Setting S, to y, is one method of initialization.

Another way isto set it to the target of the process.

Still another possibility would be to average the first four or five
observations.

It can also be shown that the smaller the value of ¢x, the more important
Isthe selection of the initial EWMA. The user would bewiseto try a
few methods, (assuming that the software has them available) before
finalizing the settings.

Why isit called " Exponential" ?

Let us expand the basic equation by first substituting for S_; in the
basic equation to obtain
§ =y g+ (1-x) [ ¥ ypo + (1-6X) S5 ]
=Yg+ (L) y o+ (1-a)2 S

By substituting for S.,, then for S_3, and so forth, until wereach S,
(whichisjust y,), it can be shown that the expanding equation can be
written as.

For example, the expanded equation for the smoothed value S5 is:

S5 =0 [(1_ R}D ysat(1- ﬂf}l.}’s_: +(1- ﬂfjj .}’5_3} +(1- Q}E 3
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6.4.3.1. Single Exponential Smoothing

[lustrates
exponential
behavior

Example

Thisillustrates the exponential behavior. The weights, éx (1-¢x)
decrease geometrically, and their sum approaches unity as shown
below, using a property of geometric series:

-1 . —(1— t] ,
a3 (1-a) = 1_([;1_&”: _(-a)

From the last formula we can see that the summation term shows that
the contribution to the smoothed value S becomes |ess at each

consecutive time period.

What isthe " best" valuefor x?

The speed at which the older responses are dampened (smoothed) is a
function of the value of «x. When ¢x is close to 1, dampening is quick
and when ¢x is close to O, dampening isslow. Thisisillustrated in the
table below:

............... > towards past observations
a (o) Qo2 Qaod  (Qa)l

9 1 01 .001 .0001
5 5 25 125 0625
i 9 81 729 .6561

The best value for ¢ is that value which results in the smallest M SE.

Let usillustrate this principle with an example. Consider the following
data set consisting of 12 observations taken over time:

Error
Time Y% S(a=.1) Error squar ed

1 71

2 70 71 -1.00 1.00
3 69 70.9 -1.90 3.61
4 68 70.71 -2.71 7.34
5 64 70.44 -6.44 41.47
6 65 69.80 -4.80 23.04
7 72 69.32 2.68 7.18
8 78 69.58 8.42 70.90
9 75 70.43 4.57 20.88
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6.4.3.1. Single Exponential Smoothing

Calculate for
different
values of ¥

Nonlinear
optimizers
can be used

Sample plot
showing
smoothed
data for 2
values of ¢x

10 75 70.88 4.12 16.97
11 75 71.29 3.71 13.76
12 70 71.67 -1.67 2.79

The sum of the squared errors (SSE) =208.96. The mean of the squared
errors (MSE) isthe SSE /11 = 19.0.

The MSE was again calculated for ¢x = .5 and turned out to be 16.29, so
in this case we would prefer an ¢x of .5. Can we do better? We could
apply the proven trial-and-error method. Thisis an iterative procedure
beginning with arange of ¢x between .1 and .9. We determine the best
initial choice for &x and then search between ¢x - and ex +/A. We
could repeat this perhaps one more time to find the best ¢x to 3 decimal
places.

But there are better search methods, such as the Marquardt procedure.
Thisisanonlinear optimizer that minimizes the sum of squares of
residuals. In general, most well designed statistical software programs
should be able to find the value of ¢&x that minimizes the M SE.

Exponential Smoothing: Original and Smoothed Values

60

] ] ] ] | ] ] ] | ] ] ] ]
1 2 34 5 65 7 8 9101112131415
mumber

Yo ow=riginal ¥ e=agipia =. 1% =alpha= 5
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6.4.3.2. Forecasting with Single Exponential Smoothing
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.3. What is Exponential Smoothing?

6.4.3.2.Forecasting with Single Exponential
Smoothing

Forecasting Formula

Forecasting The forecasting formulais the basic equation
the next point

S =y, +{1-a) s, Oza=l £ 0

New forecast This can be written as:
IS previous
forecast plus

anerror So=ao tols
adjustment #lo T ( r)

where £; isthe forecast error (actual - forecast) for period t.

In other words, the new forecast is the old one plus an adjustment for
the error that occurred in the last forecast.

Bootstrapping of Forecasts

Bootstrapping  What happens if you wish to forecast from some origin, usually the
forecasts last data point, and no actual observations are available? In this
situation we have to modify the formula to become:

S:f+1 = q’}?.::'rigim + [1_ EIISI

where Yyrigin remains constant. This technique is known as
bootstrapping.

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc432.htm (1 of 3) [5/7/2002 4:28:03 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm

6.4.3.2. Forecasting with Single Exponential Smoothing

Example of Bootstrapping

Example The last data point in the previous example was 70 and its forecast
(smoothed value S) was 71.7. Since we do have the data point and the
forecast available, we can calculate the next forecast using the regular
formula

S:r+1 = E'f’}r.::l.'rigix + [1_ EIISI

= 1(70) + 9(7L7) =715 (x=.1)

But for the next forecast we have no data point (observation). So now
we compute:

Sup=. 1(70) + .9(71.5)= 71.35

Comparison between bootstrap and regular forecasting

Table The following table displays the comparison between the two methods:
compar If?gd Period Forecast Data Forecast
two methods no data with data

13 71.50 75 715

14 71.35 75 71.9

15 71.21 74 72.2

16 71.09 78 72.4

17 70.98 86 73.0

Single Exponential Smoothing with Trend

Single Smoothing (short for single exponential smoothing) is not very
good when there is atrend. The single coefficient ¢x is not enough.
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6.4.3.2. Forecasting with Single Exponential Smoothing

Sample data
set with trend

Plot
demonstrating
inadequacy of
single
exponential
smoothing
when thereis
trend
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L et us demonstrate this with the following data set smoothed with an

x of .3

Data Fit

6.4

56 64
7.8 6.2
88 6.7
11.0 7.3
116 84
16.7 9.4
153 116
21.6 12.7
224 154

The resulting graph looks like:

25 o

20

13

10

== data

= B fitted

' HOME

3 5 ¥ 9 11 13 15

[TOOLS & AIDS [SEARCH [BACK MNEXT]|
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6.4.3.3. Double Exponential Smoothing
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6.4.3.3.Double Exponential Smoothing

Double
exponential
smoothing
uses two
constants
and is better
at handling
trends

Several
methods to
choose the
initial
values

Aswas previously observed, Single Smoothing does not excel in
following the data when there is atrend. This situation can be improved

by the introduction of a second equation with a second constant,”,
which must be chosen in conjunction with ¢x.

Here are the two equations associated with Double Exponential
Smoothing:

Sy =y, +|:1— .'.T:] [Sz—l + E:'I_l;l 0< <]
b, = ZF"IZS: _S:r—l) + [1 - 25") by, 0< <l

Note that the current value of the seriesis used to calculate its smoothed
value replacement in double exponential smoothing.
Initial Values

Asinthe case for single smoothing, there are a variety of schemesto set
initial values for § and by in double smoothing.

S, isin general set to y,. Here are three suggestions for by:

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc433.htm (1 of 2) [5/7/2002 4:28:04 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm

6.4.3.3. Double Exponential Smoothing

The first equation adjusts S directly for the trend of the previous period,
b1, by adding it to the last smoothed value, S;_;. This helps to
eliminate the lag and brings S to the appropriate base of the current
value.

The second equation then updates the trend, which is expressed as the
difference between the last two values. The equation is similar to the
basic form of single smoothing, but here applied to the updating of the
trend.
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6.4.3.4. Forecasting with Double Exponential Smoothing(LASP)
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6.4. Introduction to Time Series Analysis

6.4.3. What is Exponential Smoothing?

6.4.3.4.Forecasting with Double

Forecasting
formula

Example

Exponential Smoothing(LASP)

The one-period-ahead forecast is given by:
Fiep =S+ by
The m-periods-ahead forecast is given by:
Ftem = § + mby

Example

Consider once more the data set:
6.4, 5.6, 7.8, 88, 11, 11.6, 16.7, 15.3, 21.6, 22.4.

Now we will fit a double smoothing model with ¢x = .3343 and ¥ = 1.0.
These are the estimates that result in the lowest possible MSE.

For comparison's sake we also fit a single smoothing model with¢x =1
(thisresultsin the lowest MSE as well).

The MSE for double smoothing is 3.7024.
The MSE for single smoothing is 8.8867.
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6.4.3.4. Forecasting with Double Exponential Smoothing(LASP)

Forecasting  The forecasting results for the example are:

results for Data Double Single

the example
6.4
56 7.2 6.4
78 69 5.6
88 7.8 7.8
11.0 9.0 8.8
116 112 110
16.7 130 116
153 172 16.7
216 189 153
224 229 216

Comparison of Forecasts

Table To see how each method predicts the future, we computed the first five

showing forecasts from the last observation as follows:

single and : :

double Period Single Double

exponential 11 224 258

smoothing 12 224 288

forecasts 13 224 318
14 224 349
15 224 379

Plot A plot of these resultsis very enlightening.

comparing

single and

double

exponential

smoothing

forecasts
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6.4.3.4. Forecasting with Double Exponential Smoothing(LASP)

Plot
comparing
double
exponential
smoothing
and
regression
forecasts

S35 .

.30 .

25

20

15

10

This graph indicates that double smoothing follows the data much closer
than single smoothing. Furthermore, for forecasting single smoothing
cannot do better than projecting a straight horizontal line, which is not
very likely to occur in reality. So in this case double smoothing is
preferred.

Finally, let us compare double smoothing with linear regression:

Thisis an interesting picture. Both techniques follow the datain similar
fashion, but the regression line is more conservative. That is, thereisa
slower increase with the regression line than with double smoothing.
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6.4.3.4. Forecasting with Double Exponential Smoothing(LASP)
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The selection of the technigue depends on the forecaster. If it is desired
to portray the growth process in a more aggressive manner, then one
selects double smoothing. Otherwise, regression may be more
preferable. It should be noted that in linear regression "time" functions
as the independent variable. Chapter 4 discusses the basics of linear

regression, and the details of regression estimation.
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6.4.3.5. Triple Exponential Smoothing
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6.4.3.5. Triple Exponential Smoothing

What happens if the data show trend and seasonality?

To handle In this case double smoothing will not work. We now introduce a third
seasonality, equation to take care of seasonality (sometimes called periodicity). The

we have to resulting set of equationsis called the "Holt-Winters' (HW) method after the
add athird  names of the inventors.

arameter
P The basic equations for their method are given by:

S, = @2t + (1= &)(S,, +5,4) OVERALL SMOOTHING
-

B = 28 -8 ) +(1- Pk, TREND SMOOTHING

i, = ,{% +H1- Al SEASONAL SMOOTHING

]

FOEECAST

Em - I:S:f + P??-EI':,) 'LFI—.EH'?E
where
 Yyistheobservation
o Sisthe smoothed observation
b isthe trend factor
| isthe seasonal index
o Fistheforecast at m periods ahead
« tisanindex denoting atime period

and ﬂ'ﬁ , and’Y are constants that must be estimated in such away that the
MSE of the error is minimized. Thisis best |eft to a good software package.
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6.4.3.5. Triple Exponential Smoothing

Complete To initialize the HW method we need at |east one compl ete season's data to

season determine initial estimates of the seasonal indices| .
needed
L periods A complete season's data consists of L periods. And we need to estimate the

inaseason  trend factor from one period to the next. To accomplish this, it is advisable
to use two complete seasons; that is, 2L periods.

Initial valuesfor thetrend factor
Howtoget  The general formulato estimate theinitial trend is given by
initial
estimates
for trend E:':l YNl | Ve =Wl Yz~ Vs
and A I I
seasonality
parameters

Initial valuesfor the Seasonal I ndices

Aswe will seein the example, we work with datathat consist of 6 years
with 4 periods (that is, 4 quarters) per year. Then

Step 1. Compute the averages of each of the 6 years

Step 2: Divide the observations by the appropriate yearly mean
1 2 3 4 5 6

Yi/AL YslAo  YoIAs  YislAs Yi7lAs  YoilAg
YoAL YelAo YidAs YidAs YiglAs  YoolAe
Y/AL YRy YilAs YislAs YidAs  Ya3lAs
YaAL YelAo YiolAs YidlAs  YoolAs  YodlAe

Step 3: Now the seasonal indices are formed by computing the average of
each row. Thustheinitial seasonal indices (symbolically) are:

I1 = (Y1/Ag +Y5/Ay + Yo/ Ag + Y13/Ag + Y17/A5 + Y21/ Ag)I6
I = (Yol AL + Ye/Ag + Y10/ Az + Y14/Ag + Y18/ A5 + Yool Ag)I6
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6.4.3.5. Triple Exponential Smoothing
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13= (YalAy + Y7/Ao + Y11/A3 + Y15/A4 + Y19/As + Y20 Ag)I6
14= (YalAr + YglAo + Y12/A3 + Y16/As + Yoo/ As + Y24/ A)I6
We now know the algebra behind the computation of theinitial estimates.

The next page contains an example of triple exponential smoothing.

The case of the Zero Coefficients

Sometimes it happens that a computer program for triple exponential

smoothing outputs afinal coefficient for trend (F) or for seasonality (ﬂ) of
zero. Or worse, both are outputted as zero!
Does thisindicate that there is no trend and/or no seasonality?

Of course not! It only means that the initial values for trend and/or
seasonality were right on the money. No updating was necessary in order to
arrive at the lowest possible MSE. We should inspect the updating formulas
to verify this.
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6.4.3.6. Example of Triple Exponential Smoothing

P ENGINEERING STATISTICS HANDBOOK

[HOME 'TOOLS & AIDS [SEARCH [BACK NEXT|

6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
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6.4.3.6. Example of Triple Exponential

Smoothing

Example This example shows comparison of single, double and triple exponential

comparing smoothing for a data set.

ggl?éleé’ The following data set represents 24 observations. These are six years of

triple guarterly data (each year = 4 quarters).

exponential

smoothing

Table Quarter Period Sales Quarter Period Sales

showing the

data for the 90 1 1 362 93 1 13 544

example 2 2 385 2 14 582
3 3 432 3 15 681
4 4 341 4 16 557

91 1 5 382 94 1 17 628
2 6 409 2 18 707
3 7 498 3 19 773
4 8 387 4 20 592
92 1 9 473 95 1 21 627

2 10 513 2 22 725
3 11 582 3 23 854
4 12 474 4 24 661
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6.4.3.6. Example of Triple Exponential Smoothing

D O] M
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6.4.3.6. Example of Triple Exponential Smoothing

Comparison
of MSE's

Comparison of MSE's

¥ r _
M SE demand trend seasonality

6906 .4694
5054 .1086 1.000
936 1.000

520

.7556 0.000

1.000
9837

The updating coefficients were chosen by a computer program such that
the M SE for each of the methods was minimized.

Example of the computation of the Initial Trend

Computation

The< b>data set consists of quarterly sales data. The seasonis 1 year

of initial and since there are 4 quarters per year, L = 4. Using the formulawe
trend obtain:
A :l Yo~ M + Yo — V2 n Fr— M 4 N — Ny
gl 4 4 4 4
1[ 332 — 362 409 — 585 498 — 432 Suf— 541
=—| — ]+ —+ +
41 4 4 4 4
S+6+1654+115
Example of the computation of the Initial Seasonal | ndices
Table of 1 2 3 4 5 6
initial
seasonal 1 362 382 473 544 628 627
indices 2 385 409 513 582 707 725
3 432 498 582 681 773 854
4 341 387 474 557 592 661
¥ 380 419 5105 591 675 716.75

In this example we used the full 6 years of data. Other schemes may use
only 3, or some other number of years. There are also a number of ways

to compute initial estimates.
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6.4.3.7. Exponential Smoothing Summary
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Summary

Exponential smoothing has proven through the yearsto be very useful
in many forecasting situations. It was first suggested by C.C. Holt in
1957 and was meant to be used for non-seasonal time series showing
no trend. He later offered a procedure (1958) that does handle trends.
Winters(1965) generalized the method to include seasonality, hence
the name "Holt-Winters Method".

The Holt-Winters Method has 3 updating equations, each with a
constant that ranges from O to 1. The equations are intended to give
more weight to recent observations and less weights to observations
further in the past.

These weights are geometrically decreasing by a constant ratio.

The HW procedure can be made fully automatic by user-friendly
software.

'HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]|

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc437.htm [5/7/2002 4:28:05 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/

6.4.4. Univariate Time Series Models
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis

0.4.4. Univariate Time Series Models

Univariate The term "univariate time series' refersto atime series that consists of
Time Series  single (scalar) observations recorded sequentially over equal time
increments. Some examples are monthly CO, concentrations and

southern oscillations to predict € nino effects.

Although a univariate time series data set is usualy given asasingle
column of numbers, timeisin fact an implicit variable in the time series.
If the data are equi-spaced, the time variable, or index, does not need to
be explicitly given. The time variable may sometimes be explicitly used
for plotting the series. However, it is not used in the time series model
itself.

The analysis of time series where the data are not collected in equal time
increments is beyond the scope of this handbook.

Sample Data Sets
Stationarity

Seasonality
Common Approaches

Contents

Box-Jenkins Approach

Box-Jenkins Model Identification

Box-Jenkins Model Estimation

Box-Jenkins Model Validation

SEMPLOT Sample Output for a Box-Jenkins Analysis
SEMPLOT Sample Output for a Box-Jenkins Analysis with
Seasonality

© o N o g~ wDdPRE

=
©
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.1. Sample Data Sets

Sample The following two data sets are used as examplesin the text for this
Data Sets section.

1. Monthly mean COZ concentrations.

2. Southern oscillations.
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6.4.4.1.1. Data Set of Monthly CO2 Concentrations
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6. Process or Product Monitoring and Control

6.4. Introduction to Time Series Analysis

6.4.4. Univariate Time Series Models

6.4.4.1. Sample Data Sets

6.4.4.1.1. Data Set of Monthly CO2

Source and
Background

Data

Concentrations

This data set contains selected monthly mean CO2 concentrations at the
Mauna Loa Observatory from 1974 to 1987. The CO2 concentrations were
measured by the continuous infrared analyser of the Geophysical
Monitoring for Climatic Change division of NOAA's Air Resources
Laboratory. The selection has been for an approximation of ‘background
conditions. See Thoning et al., "Atmospheric Carbon Dioxide at Mauna
Loa Observatory: || Analysis of the NOAA/GMCC Data', 1974-1985,
J.Geophys.Res. (submitted) for details.

This dataset was received from Jm Elkins of NOAA in 1988.

Each line contains the CO2 concentration (mixing ratio in dry air,
expressed in the WM O X85 mole fraction scale, maintained by the Scripps
Institution of Oceanography). In addition, it contains the year, month, and
anumeric value for the combined month and year. This combined dateis
useful for plotting purposes.

002 Year &\vbnt h Year Mont h
333. 13 1974. 38 1974 5
332. 09 1974. 46 1974 6
331. 10 1974. 54 1974 7
329. 14 1974. 63 1974 8
327. 36 1974. 71 1974 9
327. 29 1974. 79 1974 10
328. 23 1974. 88 1974 11
329. 55 1974. 96 1974 12
330. 62 1975. 04 1975 1
331. 40 1975. 13 1975 2
331. 87 1975. 21 1975 3
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6.4.4.1.1. Data Set of Monthly CO2 Concentrations

333. 76 1978. 88 1978 11
334. 80 1978. 96 1978 12
336. 00 1979. 04 1979 1
336. 63 1979. 13 1979 2
337.93 1979. 21 1979 3
338. 95 1979. 29 1979 4
339. 05 1979. 38 1979 5
339. 27 1979. 46 1979 6
337. 64 1979. 54 1979 7
335. 68 1979. 63 1979 8
333. 77 1979. 71 1979 9
334. 09 1979. 79 1979 10
335. 29 1979. 88 1979 11
336. 76 1979. 96 1979 12
337. 77 1980. 04 1980 1
338. 26 1980. 13 1980 2
340. 10 1980. 21 1980 3
340. 88 1980. 29 1980 4
341. 47 1980. 38 1980 5
341. 31 1980. 46 1980 6
339. 41 1980. 54 1980 7
337.74 1980. 63 1980 8
336. 07 1980. 71 1980 9
336. 07 1980. 79 1980 10
337. 22 1980. 88 1980 11
338. 38 1980. 96 1980 12
339. 32 1981. 04 1981 1
340. 41 1981. 13 1981 2
341. 69 1981. 21 1981 3
342.51 1981. 29 1981 4
343. 02 1981. 38 1981 5
342. 54 1981. 46 1981 6
340. 88 1981. 54 1981 7
338. 75 1981. 63 1981 8
337. 05 1981. 71 1981 9
337.13 1981. 79 1981 10
338. 45 1981. 88 1981 11
339. 85 1981. 96 1981 12
340. 90 1982. 04 1982 1
341. 70 1982. 13 1982 2
342.70 1982. 21 1982 3
343. 65 1982. 29 1982 4
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6.4.4.1.1. Data Set of Monthly CO2 Concentrations

344. 28 1982. 38 1982 5
343. 42 1982. 46 1982 6
342.02 1982. 54 1982 7
339. 97 1982. 63 1982 8
337. 84 1982. 71 1982 9
338. 00 1982. 79 1982 10
339. 20 1982. 88 1982 11
340. 63 1982. 96 1982 12
341. 41 1983. 04 1983 1
342. 68 1983. 13 1983 2
343. 04 1983. 21 1983 3
345. 27 1983. 29 1983 4
345. 92 1983. 38 1983 5
345. 40 1983. 46 1983 6
344. 16 1983. 54 1983 7
342. 11 1983. 63 1983 8
340. 11 1983. 71 1983 9
340. 15 1983. 79 1983 10
341. 38 1983. 88 1983 11
343. 02 1983. 96 1983 12
343. 87 1984. 04 1984 1
344. 59 1984. 13 1984 2
345. 11 1984. 21 1984 3
347.07 1984. 29 1984 4
347. 38 1984. 38 1984 5
346. 78 1984. 46 1984 6
344. 96 1984. 54 1984 7
342. 71 1984. 63 1984 8
340. 86 1984. 71 1984 9
341. 13 1984. 79 1984 10
342. 84 1984. 88 1984 11
344. 32 1984. 96 1984 12
344. 88 1985. 04 1985 1
345. 62 1985. 13 1985 2
347. 23 1985. 21 1985 3
347.62 1985. 29 1985 4
348. 53 1985. 38 1985 5
347.87 1985. 46 1985 6
346. 00 1985. 54 1985 7
343. 86 1985. 63 1985 8
342. 55 1985. 71 1985 9
342. 57 1985. 79 1985 10
344. 11 1985. 88 1985 11
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6.4.4.1.1. Data Set of Monthly CO2 Concentrations

345. 49 1985. 96 1985 12
346. 04 1986. 04 1986 1
346. 70 1986. 13 1986 2
347. 38 1986. 21 1986 3
349. 38 1986. 29 1986 4
349. 93 1986. 38 1986 5
349. 26 1986. 46 1986 6
347. 44 1986. 54 1986 7
345. 55 1986. 63 1986 8
344. 21 1986. 71 1986 9
343. 67 1986. 79 1986 10
345. 09 1986. 88 1986 11
346. 27 1986. 96 1986 12
347. 33 1987. 04 1987 1
347. 82 1987. 13 1987 2
349. 29 1987. 21 1987 3
350. 91 1987. 29 1987 4
351. 71 1987. 38 1987 5
350. 94 1987. 46 1987 6
349. 10 1987. 54 1987 7
346. 77 1987. 63 1987 8
345. 73 1987. 71 1987 9
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6.4.4.1.2. Data Set of Southern Oscillations
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models
6.4.4.1. Sample Data Sets

6.4.4.1.2. Data Set of Southern Oscillations

Source and The southern oscillation is defined as the barametric pressure difference

Background  between Tahiti and the Darwin Islands at sea level. The southern
oscillation is a predictor of el nino which in turn is thought to be a driver
of world-wide weather. Specifically, repeated southern oscillation
values less than -1 typically defines an el nino. Note: the decimal values
in the second column of the data given below are obtained as (month
number - 0.5)/12.

Data
Sout hern
Gscillation Year + fraction Year Mont h
-0.7 1955. 04 1955 1
1.3 1955. 13 1955 2
0.1 1955. 21 1955 3
-0.9 1955. 29 1955 4
0.8 1955. 38 1955 5
1.6 1955. 46 1955 6
1.7 1955. 54 1955 7
1.4 1955. 63 1955 8
1.4 1955. 71 1955 9
1.5 1955. 79 1955 10
1.4 1955. 88 1955 11
0.9 1955. 96 1955 12
1.2 1956. 04 1956 1
1.1 1956. 13 1956 2
0.9 1956. 21 1956 3
1.1 1956. 29 1956 4
1.4 1956. 38 1956 5
1.2 1956. 46 1956 6
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6.4.4.1.2. Data Set of Southern Oscillations

1.1 1956.
1.0 1956.
0.0 1956.
1.9 1956.
0.1 1956.
0.9 1956.
0.4 1957.
-0. 4 1957.
-0.4 1957.
0.0 1957.
-1.1 1957.
-0.4 1957.
0.1 1957.
-1.1 1957.
-1.0 1957.
-0.1 1957.
-1.2 1957.
-0.5 1957.
-1.9 1958.
-0.7 1958.
-0.3 1958.
0.1 1958.
-1.3 1958.
-0.3 1958.
0.3 1958.
0.7 1958.
-0.4 1958.
-0. 4 1958.
-0.6 1958.
-0.8 1958.
-0.9 1959.
-1.5 1959.
0.8 1959.
0.2 1959.
0.2 1959.
-0.9 1959.
-0.5 1959.
-0.6 1959.
0.0 1959.
0.3 1959.
0.9 1959.
0.8 1959.
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6.4.4.1.2. Data Set of Southern Oscillations
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6.4.4.1.2. Data Set of Southern Oscillations

-0.4 1963.
-0.7 1963.
-1.6 1963.
-1.0 1963.
-1.4 1963.
-0.5 1964.
-0.2 1964.
0.6 1964.
1.7 1964.
-0.2 1964.
0.7 1964.
0.5 1964.
1.4 1964.
1.3 1964.
1.3 1964.
0.0 1964.
-0.5 1964.
-0.5 1965.
0.0 1965.
0.2 1965.
-1.1 1965.
0.0 1965.
-1.5 1965.
-2.3 1965.
-1.3 1965.
-1.4 1965.
-1.2 1965.
-1.8 1965.
0.0 1965.
-1.4 1966.
-0.5 1966.
-1.6 1966.
-0.7 1966.
-0.6 1966.
0.0 1966.
-0.1 1966.
0.3 1966.
-0.3 1966.
-0.3 1966.
-0.1 1966.
-0.5 1966.
1.5 1967.
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6.4.4.1.2. Data Set of Southern Oscillations

1.2 1967. 13 1967 2
0.8 1967. 21 1967 3
-0.2 1967. 29 1967 4
-0.4 1967. 38 1967 5
0.6 1967. 46 1967 6
0.0 1967. 54 1967 7
0.4 1967. 63 1967 8
0.5 1967. 71 1967 9
-0.2 1967. 79 1967 10
-0.7 1967. 88 1967 11
-0.7 1967. 96 1967 12
0.5 1968. 04 1968 1
0.8 1968. 13 1968 2
-0.5 1968. 21 1968 3
-0.3 1968. 29 1968 4
1.2 1968. 38 1968 5
1.4 1968. 46 1968 6
0.6 1968. 54 1968 7
-0.1 1968. 63 1968 8
-0.3 1968. 71 1968 9
-0.3 1968. 79 1968 10
-0.4 1968. 88 1968 11
0.0 1968. 96 1968 12
-1.4 1969. 04 1969 1
0.8 1969. 13 1969 2
-0.1 1969. 21 1969 3
-0.8 1969. 29 1969 4
-0.8 1969. 38 1969 5
-0.2 1969. 46 1969 6
-0.7 1969. 54 1969 7
-0.6 1969. 63 1969 8
-1.0 1969. 71 1969 9
-1.4 1969. 79 1969 10
-0.1 1969. 88 1969 11
0.3 1969. 96 1969 12
-1.2 1970. 04 1970 1
-1.2 1970. 13 1970 2
0.0 1970. 21 1970 3
-0.5 1970. 29 1970 4
0.1 1970. 38 1970 5
1.1 1970. 46 1970 6
-0.6 1970. 54 1970 7
0.3 1970. 63 1970 8
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6.4.4.1.2. Data Set of Southern Oscillations

1.2 1970. 71 1970 9
0.8 1970. 79 1970 10
1.8 1970. 88 1970 11
1.8 1970. 96 1970 12
0.2 1971. 04 1971 1
1.4 1971. 13 1971 2
2.0 1971. 21 1971 3
2.6 1971. 29 1971 4
0.9 1971. 38 1971 5
0.2 1971. 46 1971 6
0.1 1971. 54 1971 7
1.4 1971. 63 1971 8
1.5 1971. 71 1971 9
1.8 1971. 79 1971 10
0.5 1971. 88 1971 11
0.1 1971. 96 1971 12
0.3 1972. 04 1972 1
0.6 1972. 13 1972 2
0.1 1972. 21 1972 3
-0.5 1972. 29 1972 4
-2.1 1972. 38 1972 5
-1.7 1972. 46 1972 6
-1.9 1972. 54 1972 7
-1.1 1972. 63 1972 8
-1.5 1972. 71 1972 9
-1.1 1972. 79 1972 10
-0.4 1972. 88 1972 11
-1.5 1972. 96 1972 12
-0.4 1973. 04 1973 1
-1.5 1973. 13 1973 2
0.2 1973. 21 1973 3
-0.4 1973. 29 1973 4
0.3 1973. 38 1973 5
1.2 1973. 46 1973 6
0.5 1973. 54 1973 7
1.2 1973. 63 1973 8
1.3 1973. 71 1973 9
0.6 1973. 79 1973 10
2.9 1973. 88 1973 11
1.7 1973. 96 1973 12
2.2 1974. 04 1974 1
1.5 1974. 13 1974 2
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6.4.4.1.2. Data Set of Southern Oscillations

-1. 4 1977.79 1977 10

-1.6 1977. 88 1977 11
-1.3 1977. 96 1977 12
-0.5 1978. 04 1978 1
-2.6 1978. 13 1978 2
-0.8 1978. 21 1978 3
-0.9 1978. 29 1978 4
1.3 1978. 38 1978 5
0.4 1978. 46 1978 6
0.4 1978. 54 1978 7
0.1 1978. 63 1978 8
0.0 1978. 71 1978 9
-0.8 1978. 79 1978 10
-0.1 1978. 88 1978 11
-0.2 1978. 96 1978 12
-0.5 1979. 04 1979 1
0.6 1979. 13 1979 2
-0.5 1979. 21 1979 3
-0.7 1979. 29 1979 4
0.5 1979. 38 1979 5
0.6 1979. 46 1979 6
1.3 1979. 54 1979 7
-0.7 1979. 63 1979 8
0.1 1979. 71 1979 9
-0. 4 1979. 79 1979 10
-0.6 1979. 88 1979 11
-0.9 1979. 96 1979 12
0.3 1980. 04 1980 1
0.0 1980. 13 1980 2
-1.1 1980. 21 1980 3
-1.7 1980. 29 1980 4
-0.3 1980. 38 1980 5
-0.7 1980. 46 1980 6
-0.2 1980. 54 1980 7
-0.1 1980. 63 1980 8
-0.5 1980. 71 1980 9
-0.3 1980. 79 1980 10
-0.5 1980. 88 1980 11
-0.2 1980. 96 1980 12
0.3 1981. 04 1981 1
-0.5 1981. 13 1981 2
-2.0 1981. 21 1981 3
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6.4.4.1.2. Data Set of Southern Oscillations

-0.6 1981.
0.8 1981.
1.6 1981.
0.8 1981.
0.4 1981.
0.3 1981.

-0.7 1981.
0.1 1981.
0.4 1981.
1.0 1982.
0.0 1982.
0.0 1982.

-0.1 1982.

-0.6 1982.

-2.5 1982.

-2.0 1982.

-2.7 1982.

-1.9 1982.

-2.2 1982.

-3.2 1982.

-2.5 1982.

-3. 4 1983.

-3.5 1983.

-3.2 1983.

-2.1 1983.
0.9 1983.

-0.5 1983.

-0.9 1983.

-0. 4 1983.
0.9 1983.
0.3 1983.

-0.1 1983.

-0.1 1983.
0.0 1984.
0.4 1984.

-0.8 1984.
0.4 1984.
0.0 1984.

-1.2 1984.
0.0 1984.
0.1 1984.
0.1 1984.

-0.6 1984.

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4412.htm (9 of 12) [5/7/2002 4:28:07 PM]

29
38
46
54
63
71
79
88
96

04
13
21
29
38
46
54
63
71
79
88
96

04
13
21
29
38
46
54
63
71
79
88
96

04
13
21
29
38
46
54
63
71
79

1981
1981
1981
1981
1981
1981
1981
1981
1981

1982
1982
1982
1982
1982
1982
1982
1982
1982
1982
1982
1982

1983
1983
1983
1983
1983
1983
1983
1983
1983
1983
1983
1983

1984
1984
1984
1984
1984
1984
1984
1984
1984
1984

PR

i

PR

o

NPFPOOOO~NO O~

NPFPOOOO~NOOITA WN PR NPFPOOO~NOOTA,WNPE

QWO ~NOOUILE WN -



6.4.4.1.2. Data Set of Southern Oscillations
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-0.3 1984. 96 1984 12
-0.5 1985. 04 1985 1

0.8 1985. 13 1985 2

0.2 1985. 21 1985 3

1.4 1985. 29 1985 4
-0.2 1985. 38 1985 5
-1. 4 1985. 46 1985 6
-0.3 1985. 54 1985 7

0.7 1985. 63 1985 8

0.0 1985. 71 1985 9
-0.8 1985. 79 1985 10
-0.4 1985. 88 1985 11

0.1 1985. 96 1985 12

0.8 1986. 04 1986 1
-1.2 1986. 13 1986 2
-0.1 1986. 21 1986 3

0.1 1986. 29 1986 4
-0.6 1986. 38 1986 5

1.0 1986. 46 1986 6

0.1 1986. 54 1986 7
-0.9 1986. 63 1986 8
-0.5 1986. 71 1986 9

0.6 1986. 79 1986 10
-1.6 1986. 88 1986 11
-1.6 1986. 96 1986 12
-0.7 1987. 04 1987 1
-1.4 1987. 13 1987 2
-2.0 1987. 21 1987 3
-2.7 1987. 29 1987 4
-2.0 1987. 38 1987 5
-2.7 1987. 46 1987 6
-1.8 1987. 54 1987 7
-1.7 1987. 63 1987 8
-1.1 1987. 71 1987 9
-0.7 1987. 79 1987 10
-0.1 1987. 88 1987 11
-0.6 1987. 96 1987 12
-0.3 1988. 04 1988 1
-0.6 1988. 13 1988 2

0.1 1988. 21 1988 3

0.0 1988. 29 1988 4

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4412.htm (10 of 12) [5/7/2002 4:28:07 PM]



6.4.4.1.2. Data Set of Southern Oscillations

o e s
R ©OUTODNRE W

oo = el o
NDROODOOUINO O U

cCoocororNO
ANFRPOOCITOCIOEFLONDMDN

1
o
CCUTCOONUUIOITO ~AELO

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4412.htm (11 of 12) [5/7/2002 4:28:07 PM]

1988.
1988.
1988.
1988.
1988.
1988.
1988.
1988.

1989.
1989.
1989.
1989.
1989.
1989.
1989.
1989.
1989.
1989.
1989.
1989.

1990.
1990.
1990.
1990.
1990.
1990.
1990.
1990.
1990.
1990.
1990.
1990.

1991.
1991.
1991.
1991.
1991.
1991.
1991.
1991.
1991.
1991.
1991.

38
46
54
63
71
79
88
96

04
13
21
29
38
46
54
63
71
79
88
96

04
13
21
29
38
46
54
63
71
79
88
96

04
13
21
29
38
46
54
63
71
79
88

1988
1988
1988
1988
1988
1988
1988
1988

1989
1989
1989
1989
1989
1989
1989
1989
1989
1989
1989
1989

1990
1990
1990
1990
1990
1990
1990
1990
1990
1990
1990
1990

1991
1991
1991
1991
1991
1991
1991
1991
1991
1991
1991

PR PR
NFRPOOWONOURWNERE NRPROOONOU

©CooO~NOoO U, WNPE

PO OOO~NOOITAWNEPE

=



6.4.4.1.2. Data Set of Southern Oscillations
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6.4.4.2. Stationarity
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6.4.4.2. Stationarity

Sationarity A common assumption in many time series techniquesis that the
data are stationary.

A stationary process has the property that the mean and variance do
not change over time. Stationarity can be defined in precise
mathematical terms, but for our purpose we mean aflat looking
series, without trend, constant variance over time, and no periodic
fluctuations (seasonality).

For practical purposes, stationarity can usually be determined from a
run sequence plot.

Transformations  |f the time seriesis not stationary, we can often transform it to
to Achieve stationarity with one of the following techniques.

Sationarity 1. We can difference the data. That is, given the series Z,, we
create the new series

Y.=2;,—4;,

The differenced datawill contain one less point than the
original data. Although you can difference the data more than
once, one differene is usually sufficient.

2. If the data contain atrend, we can fit some type of curveto
the data and then model the residuals from that fit. Since the
purpose of thefit isto ssimply remove long term trend, a
simplefit, such asastraight line, is typically used.

3. For non-constant variance, taking the logarithm or square root
of the series may stabilize the variance. For negative data, you
can add a suitable constant to make all the data positive before
applying the transformation. This constant can then be
subtracted from the model to obtain predicted (i.e., the fitted)
values and forecasts for future points.

The above techniques are intended to generate series with constant
location and scale. Although seasonality also violates stationarity,
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6.4.4.2. Stationarity
thisis usually explicitly incorporated into the time series model.

Example The following plots are from a data set of monthly CO2
concentrations.

Rl Sequence CO2 Concentrations for Mauna Loa Obse rvatory
Plot 260

A i

B 350 \ II\II

15 SV

g 340 - | (\/\/ 'Ir )

g f f / /

o - N IﬁIILI.I IL"Ir v

g 330 \/\fl \f

R L
1974 1977 1980 1983 1986 1884
Time

The initial run sequence plot of the dataindicatesarising trend. A
visual inspection of this plot indicates that a simple linear fit should
be sufficient to remove this upward trend.

This plot aso shows periodical behavior. Thisis discussed in the
next section.

Linear Trend
Removed
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6.4.4.2. Stationarity

CO2 Concentrations with Linear Trend Remowved

SATTTIRTHIEY

CO2 Concenkalions
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1874 197TT 1880 1883 1986 18849

Date

This plot contains the residuals from alinear fit to the original data.
After removing the linear trend, the run sequence plot indicates that
the data have a constant location and variance, although the pattern
of the residuals shows that the data depart from the model in a
systematic way.
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6.4.4.3. Seasonality

Seasonality Many time series display seasonality. By seasonality, we mean periodic
fluctuations. For example, retail salestend to peak for the Christmas
season and then decline after the holidays. So time series of retail sales
will typically show increasing sales from September through December
and declining sales in January and February.

Seasonality is quite common in economic time series. It isless common
In engineering and scientific data.

If seasonality is present, it must be incorporated into the time series
model. In this section, we discuss techniques for detecting seasonality.
We defer modeling of seasonality until later sections.

Detecting

iy he following graphical techniques can be used to detect seasonality.

1. A run sequence plot will often show seasonality.

2. A seasonal subseries plot is a specialized technique for showing
seasonality.

3. Multiple box plots can be used as an aternative to the seasonal
subseries plot to detect seasonality.

4. The autocorrelation plot can help identify seasonality.

Examples of each of these plots will be shown below.

The run sequence plot is a recommended first step for analyzing any
time series. Although seasonality can sometimes be indicated with this
plot, seasonality is shown more clearly by the seasonal subseries plot or
the box plot. The seasonal subseries plot does an excellent job of
showing both the seasonal differences (between group patterns) and also
the within-group patterns. The box plot shows the seasonal difference
(between group patterns) quite well, but it does not show within group
patterns. However, for large data sets, the box plot isusually easier to
read than the seasonal subseries plot.

Both the seasonal subseries plot and the box plot assume that the

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc443.htm (1 of 5) [5/7/2002 4:28:08 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm

6.4.4.3. Seasonality

Example
without
Seasonality

Run

Sequence
Plot

seasonal periods are known. In most cases, the analyst will in fact know
this. For example, for monthly data, the period is 12 since there are 12
monthsin ayear. However, if the period is not known, the
autocorrelation plot can help. If there is significant seasonality, the
autocorrelation plot should show spikes at lags equal to the period. For
example, for monthly data, if there is a seasonality effect, we would
expect to see significant peaks at lag 12, 24, 36, and so on (although the
intensity may decrease the further out we go).

The following plots are from a data set of southern oscillations for
predicting € nino.

Southern Oscillations

5 ’1
ki

--q- T | T T - - -
1955 19ES 1975 1985 1985

No obvious periodic patterns are apparent in the run sequence plot.
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6.4.4.3. Seasonality

n.a] Seasonal Subseries Plot of Southern Oscillations
Subseries 3
Plot
1] I
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Feb Apr June Aug Cict Cec
Konth

The means for each month are relatively close and show no obvious
pattern.

Box Plot Box Plot of Southern Oscillations
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As with the seasonal subseries plot, no obvious seasonal patternis
apparent.

Dueto the rather large number of observations, the box plot shows the
difference between months better than the seasonal subseries plot.
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6.4.4.3. Seasonality

Example The following plots are from a data set of monthly CO2 concentrations.
with A linear trend has been removed from these data.
Seasonality
Run cO2 0 . I
oncentrations with Linear Trend Removed

Sequence 1
Plot -
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Date

This plot shows periodic behavior. However, it is difficult to determine
the nature of the seasonality from this plot.

Seasonal Seasonal Subseries Plot of CO2 Concentrations
Subseries
Plot +]
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Month

CO2 Concentralions
|

The seasonal subseries plot shows the seasonal pattern more clearly. In
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6.4.4.3. Seasonality
this case, the CO, concentrations are at a minimun in September and

October. From there, steadily the concentrations increase until June and
then begin declining until September.

Box Plot Box Plot of CO2 Concentrations
4 ¥
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Month

As with the seasonal subseries plot, the seasonal pattern is quite evident
in the box plot.
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6.4.4.3.1. Seasonal Subseries Plot
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6.4.4.3.1. Seasonal Subseries Plot

Purpose Seasonal subseries plots (Cleveland 1993) are atool for detecting
seasonality in atime series.

Thisplot isonly useful if the period of the seasonality is already known.
In many cases, thiswill in fact be known. For example, monthly data
typically has a period of 12.

If the period is not known, an autocorrelation plot or spectral plot can be
used to determineit.

Sample Plot Seasonal Subseries Plot of CO2 Concentrations

3 mm
AT

"
:E_'ﬁli l;"!*!t W\‘Fﬂﬂ
> ik

Jan Mar May July Sep Mo

Feb Apr June Aug Cict Cec
Month

CO2 Concentralions
|

This seasonal subseries plot containing monthly data of CO2
concentrations reveals a strong seasonality pattern. The CO2
concentrations peak in May, steadily decrease through September, and
then begin rising again until the May peak.
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6.4.4.3.1. Seasonal Subseries Plot

This plot allows you to detect both between group and within group
patterns.

If there is alarge number of observations, then a box plot may be
preferable.

Definition Seasonal subseries plots are formed by

Vertical axis:.  Response variable

Horizontal axis: Time ordered by season. For example, with
monthly data, al the January values are plotted
(in chronological order), then all the February
values, and so on.

In addition, areference lineis drawn at the group means.

The user must specify the length of the seasonal pattern before
generating this plot. In most cases, the analyst will know this from the
context of the problem and data collection.

Questions The seasonal subseries plot can provide answers to the following
guestions:

1. Do the data exhibit a seasonal pattern?
2. What isthe nature of the seasonality?

3. Isthere awithin-group pattern (e.g., do January and July exhibit
similar patterns)?
4. Arethere any outliers once seasonality has been accounted for?

I mportance It isimportant to know when analyzing atime seriesif thereisa
significant seasonality effect. The seasonal subseries plot is an excellent
tool for determining if there is a seasona pattern.

Related Box Plot
Techniques Run Sequence Plot
Autocorrelation Plot

Software Seasonal subseries plots are available in afew general purpose statistical
software programs. They are available in Dataplot. It may possible to

write macros to generate this plot in most statistical software programs
that do not provide it directly.
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6.4.4.4.Common Approaches to Univariate
Time Series

There are anumber of approaches to modeling time series. We outline
afew of the most common approaches below.

Trend, One approach isto decompose the time series into a trend, seasonal,
Seasonal, and residual component.
Residual

Triple exponential smoothing is an example of this approach. Another
example, called seasonal loess, is based on locally weighted |east
sguares and is discussed by Cleveland (1993). We do not discuss
seasonal loess in this handbook.

Decompositions

Frequency Another approach, commonly used in scientific and engineering

Based Methods  applications, isto analyze the series in the frequency domain. An
example of this approach in modeling a sinusoidal type data set is
shown in the beam deflection case study. The spectral plot isthe

primary tool for the frequency analysis of time series.

Detailed discussions of frequency-based methods are included in
Bloomfield (1976), Jenkins and Watts (1968), and Chatfield (1996).
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6.4.4.4. Common Approaches to Univariate Time Series

Autoregressive A common approach for modeling univariate time seriesis the
(AR) Models autoregressive (AR) model:

Xy =0+ Xp 1+ 92X 90+ ..+ 9 Xy + Ay

where X; isthe time series, A; represent normally distributed random

errors, and ?51, ¢P and & are the parameters of the model, with the
mean of the time series equal to

r
F—31—¢

An autoregressive model is ssimply a linear regression of the current

value of the series against one or more prior values of the series. The
value of piscalled the order of the AR model.

AR models can be analyzed with one of various methods, including
standard linear |east squares technigues. They also have a

straightforward interpretation.

Moving Another common approach for modeling univariate time series
':\/IV:(SZ%G (MA) models is the moving average (MA) model!:

X, =X+A—0A | —hA ,—.. . — 8,4,

where X; is the time series, X isthe mean of the series, A are
random shocks to the series, and #4, ... , g are the parameters of the
model. The value of q is called the order of the MA model.

T hat is, amoving average model is essentially alinear regression of

the current value of the series against the random shocks of one or
more prior values of the series. The random shocks at each point are
assumed to come from the same distribution, typically a normal
distribution, with constant location and scale. The distinction in this
model is that these random shocks are propogated to future values of
the time series. Fitting the MA estimates is more complicated than
with AR models because the error terms depend on the model fitting.
This means that iterative non-linear fitting procedures need to be used
in place of linear least squares. MA models also have aless obvious
interpretation than AR models.

Given the more difficult estimation and interpretation of MA models,
the obvious question iswhy are they used instead of AR models? In
the standard regression situation, the error terms, or random shocks,
are assumed to be independent. That is, the random shocks at the ith
observation only affect that ith observation. However, in many time
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6.4.4.4. Common Approaches to Univariate Time Series

series this assumption is not valid since the random shocks are
propogated to future values of the time series. Moving average
models accommodate the random shocks in previous values of the
time series in estimating the current value of the time series.

Note, however, that the error terms after the model is fit should be
independent and follow the standard assumptions for a univariate

process.
Box-Jenkins Box and Jenkins popularized an approach that combines the moving
Approach average and the autoregressive approaches in the book "Time Series

Analysis. Forecasting and Control" (Box and Jenkins, 1970).

Although both autoregressive and moving average approaches were
already known (and were originally investigated by Y ule), the
contribution of Box and Jenkins was in developing a systematic
methodol ogy for identifying and estimating models that could
Incorporate both approaches. This makes Box-Jenkins models a
powerful class of models. The next several sectionswill discuss these
modelsin detail.
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6.4.4.5. Box-Jenkins Models
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Approach
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The Box-Jenkins ARMA model is acombination of the AR and MA
models (described on the previous page):

Xi=0+ X+ 92X o+ .+ 9 X, o+
Ay —8 A —8A; o — ... —8,A;

where the terms in the equation have the same meaning as given for
the AR and MA model.

A couple of notes on this mode!.
1. The Box-Jenkins model assumes that the time seriesis

stationary. Box and Jenkins recommend differencing
non-stationary series one or more times to achieve stationarity.
Doing so produces an ARIMA model, with the"I" standing for
"Integrated".

. Some formulations transform the series by subtracting the mean

of the series from each data point. Thisyields a serieswith a
mean of zero. Whether you need to do this or not is dependent
on the software you use to estimate the model.

. Box-Jenkins models can be extended to include seasonal

autoregressive and seasonal moving average terms. Although
this complicates the notation and mathematics of the model, the
underlying concepts for seasonal autoregressive and seasonal
moving average terms are similar to the non-seasonal
autoregressive and moving average terms.

. The most general Box-Jenkins model includes difference

operators, autoregressive terms, moving average terms, seasonal
difference operators, seasonal autoregressive terms, and
seasonal moving average terms. As with modeling in general,
however, only necessary terms should be included in the model.
Those interested in the mathematical details can consult Box,

Jenkins and Reisel (1994), Chatfield (1996), or Brockwell
(1991).
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6.4.4.5. Box-Jenkins Models
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Box-Jenkins
Modeling

Advantages

Disadvantages

Sufficiently
Long Series
Required
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There are three primary stages in building a Box-Jenkins time series
model.

1. Model Identification
2. Modd Estimation
3. Model Validation

The advantages of Box-Jenkins models are

1. They are quite flexible due to the inclusion of both
autoregressive and moving average terms.

2. Based on the Wold decomposition thereom (not discussed in the
Handbook), a stationary process can be approximated by an
ARMA model. In practice, finding that approximation may not

be easy.

The disadvantages of Box-Jenkins models are

1. Chatfield (1996) recommends decomposition methods for series
in which the trend and seasonal components are dominant.

2. Building good ARIMA models generally requires more
experience than other methods.

Typicaly, effective fitting of Box-Jenkins models requires at least a
moderately long series. Chatfield (1996) recommends at |east 50
observations. Many others would recommend at least 100
observations.
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Detecting
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Differencing to
achieve
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Seasonal
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Thefirst step in developing a Box-Jenkins model isto determine if
the seriesis stationary and if there is any significant seasonality that

needs to be modeled.

Stationarity can be assessed from arun sequence plot. The run

sequence plot should show constant location and scale. It can also be
detected from an autocorrelation plot. Specifically, non-stationarity is

often indicated by an autocorrelation plot with very slow decay.

Seasonality (or periodicity) can usually be assessed from an
autocorrel ation plot, a seasonal subseries plot, or a spectral plot.

Box and Jenkins recommend the differencing approach to achieve
stationarity. However, fitting a curve and subtracting the fitted values
from the original data can also be used in the context of Box-Jenkins
models.

At the model identification stage, our goal is to detect seasonality, if
it exists, and to identify the order for the seasonal autoregressive and
seasonal moving average terms. For many series, the period is known
and a single seasonality term is sufficient. For example, for monthly
datawe would typically include either a seasonal AR 12 term or a
seasonal MA 12 term. For Box-Jenkins models, we do not explicitly
remove seasonality before fitting the model. Instead, we include the
order of the seasonal termsin the model specification to the ARIMA
estimation software. However, it may be helpful to apply a seasonal
difference to the data and regenerate the autocorrelation and partial
autocorrelation plots. This may help in the model idenfitication of the
non-seasonal component of the model. In some cases, the seasonal
differencing may remove most or all of the seasonality effect.
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6.4.4.6. Box-Jenkins Model Identification

Once stationarity and seasonality have been addressed, the next step
Isto identify the order (i.e., the p and q) of the autoregressive and
moving average terms.

The primary tools for doing this are the autocorrelation plot and the
partial autocorrelation plot. The sample autocorrelation plot and the

sample partial autocorrelation plot are compared to the theoretical
behavior of these plots when the order is known.

Specifically, for an AR(1) process, the sample autocorrelation
function should have an exponentially decreasing appearance.
However, higher-order AR processes are often a mixture of

exponentially decreasing and damped sinusoidal components.

For higher-order autoregressive processes, the sample autocorrelation
needs to be supplemented with a partial autocorrelation plot. The
partial autocorrelation of an AR(p) process becomes zero at lag p+1,
So we examine the sample partial autocorrelation function to see if
there is evidence of adeparture from zero. Thisis usually determined
by placing a 95% confidence interval on the sample partial
autocorrelation plot (most software programs that generate sample
autocorrelation plots will also plot this confidence interval). If the
software program does not generate the confidence band, it is

approximately :I:Ef VIV , with N denoting the sample size.

A MA process may be indicated by an autocorrelation function that
has one or more spikes. The autocorrelation function of a MA(q)
process becomes zero at lag g+1, so we examine the sample
autocorrelation function to see where it essentially becomes zero. We
do this by placing the 95% confidence interval for the sample
autocorrelation function on the sample autocorrelation plot. Most
software that can generate the autocorrelation plot can also generate
this confidence interval.

The sample partial autocorrelation function is generally not hel pful
for identifying the order of the moving average process.
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6.4.4.6. Box-Jenkins Model Identification

Shape of The following table summarizes how we use the sample
Autocorrelation  autocorrelation function for model identification.
Function

SHAPE INDICATED MODEL

Exponential, decayingto | Autoregressive model. Use the

zero partial autocorrelation plot to
identify the order of the
autoregressive model.

Alternating positiveand | Autoregressive model. Use the

negative, decaying to partial autocorrelation plot to

zero help identify the order.

One or more spikes, rest | Moving average model, order

are essentially zero identified by where plot
becomes zero.

Decay, starting after a Mixed autoregressive and

few lags moving average model.

All zero or closeto zero | Datais essentially random.

High values at fixed Include seasonal
intervals autoregressive term.
No decay to zero Seriesis not stationary.
Mixed Models In practice, the sample autocorrelation and partial autocorrelation
Difficult to functions are not clean, which makes the model identification more
| dentify difficult. In particular, mixed models can be particularly difficult to
identify.

Although experience is helpful, devel oping good models using these
sample plots can involve much trial and error. For thisreason, in
recent years information-based criteria such as FPE (Final Prediction
Error) and AIC (Aikake Information Criterion) and others have been
preferred and used. These techniques can help automate the model
identification process. These techniques require computer software to
use. Fortunately, these techniques are available in many commerical
statistical software programs that provide ARIMA modeling
capabilities.

For additional information on these techniques, see (Brockwell and
Davis, 1991).
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6.4.4.6. Box-Jenkins Model Identification

Examples We show atypical series of plotsfor performing the initial model
identification for

1. the southern oscillations data and

2. the COZ monthly concentrations data.
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6.4.4.6.1. Model Identification for Southern Oscillations Data
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0.4.4.6.1. Model Identification for Southern

Example for
Southern
Oscillations

Run Sequence
Plot

Oscillations Data

We show typical series of plotsfor the initial model identification
stages of Box-Jenkins modeling for two different examples.

Thefirst example isfor the southern oscillations data set. We start

with the run sequence plot and seasonal subseries plot to determine if
we need to address stationarity and seasonality.

Southern Oscillations
3
- |
A ’
VW
. N r ‘ F
P
_3—-
-4 . , , , . . .
1955 19 B 1975 1985 1985

The run sequence plot indicates stationarity.
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6.4.4.6.1. Model Identification for Southern Oscillations Data

Seasonal Seasonal Subseries Plot of Southemn Oscillations
Subseries Plot
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The seasonal subseries plot indicates that there is no significant
seasonality.

Since the above plots show that this series does not exhibit any
significant non-stationarity or seasonality, we generate the
autocorrelation and partial autocorrelation plots of the raw data.

Autocorrelation Southern Oscillations
Plot ;

0.5

g - —

5 o :

8 Ih—

z —

.5

The autocorrelation plot shows a mixture of exponentially decaying
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and damped sinusoidal components. This indicates that an
autoregressive model, with order greater than one, may be
appropriate for these data. The partial autocorrelation plot should be
examined to determine the order.

Partial _ Southern Oscillations
Autocorrelation

Plot

=
i
|

Partial Aulocoir elation
[}
|

S M o e A e S B S B e S B B e S B
a 10 20 30 49 50 B0 7O 80 80 100

Lag

The partial autocorrelation plot suggests that an AR(2) model might
be appropriate..

In summary, our intial attempt would be to fit an AR(2) model with
no seasonal terms and no differencing or trend removal. Model
validation should be performed before accepting thisas afinal
model.
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Example for
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Run Sequence
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The second example is for the monthly CO, concentrations data set.

As before, we start with the run sequence plot to check for
stationarity.

CO2 Concentrations for Mauna Loa Obse vatory
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Theinitial run sequence plot of the dataindicates arising trend. A
visual inspection of this plot indicates that a ssimple linear fit should
be sufficient to remove this upward trend.
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6.4.4.6.2. Model Identification for the CO2 Concentrations Data

Linear Trend
Removed

Autocorrelation
Plot

CO2 Concentrations with Linear Trend Removed
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This plot contains the residuals from alinear fit to the original data.
After removing the linear trend, the run sequence plot indicates that
the data have a constant location and variance, which implies
stationarity.

However, the plot does show seasonality. We generate an
autocorrelation plot to help determine the period followed by a
seasonal subseries plot.

CO2 Concentrations for Mauna Loa Obse vatory

Aulocarrelation
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6.4.4.6.2. Model Identification for the CO2 Concentrations Data

The autocorrelation plot shows an alternating pattern of positive and
negative spikes. It also shows a repeating pattern every 12 lags,
which indicates a seasonality effect.

The two connected lines on the autocorrelation plot are 95% and
99% confidence intervals for statistical significance of the
autocorrelations.

Seasonal

) Seasonal Subseries Plot of CO2 Concentrations
Subseries Plot
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Month

CO2 Concenralions
|

A significant seasonal pattern isobviousin this plot, so we need to
include seasonal termsiin fitting a Box-Jenkins model. Since thisis
monthly data, we would typically include either alag 12 seasonal
autoregressive and/or moving average term.

To help identify the non-seasonal components, we will take a
seasonal difference of 12 and generate the autocorrelation plot on the
seasonally differenced data.
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Autocorrelation
Plot for
Seasonally
Differenced
Data

Partial
Autocorrelation
Plot of
Seasonally
Differenced
Data
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This autocorrelation plot shows a mixture of exponential decay and a
damped sinusoidal pattern. Thisindicates that an AR model, with
order greater than one, may be appropriate. We generate a partial
autocorrelation plot to help identify the order.

CO2 Concentrations for Mauna Loa Obse vatory
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The partial autocorrelation plot suggests that an AR(2) model might
be appropriate since the partial autocorrelation becomes zero after
the second lag. The lag 12 is also significant, indicating some
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remaining seasonality.

In summary, our intial attempt would be to fit an AR(2) model with a
seasonal AR(12) term on the data with alinear trend line removed.
We could try the model both with and without seasonal differencing
applied. Model validation should be performed before accepting this
asafina model.
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6.4.4.6.3. Partial Autocorrelation Plot
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6.4.4.6.3. Partial Autocorrelation Plot

Purpose:
Model

I dentification
for
Box-Jenkins
Models

Partial autocorrelation plots (Box and Jenkins, pp. 64-65, 1970) area
commonly used tool for model identification in Box-Jenkins models.

The partial autocorrelation at lag k is the autocorrel ation between X;
and X that is not accounted for by lags 1 through k-1.

There are algorithms, not discussed here, for computing the partial
autocorrelation based on the sample autocorrelations. See (Box and

Jenkins, 1970) or (Brockwell, 1991) for the mathematical details.

Specifically, partial autocorrelations are useful in identifying the order
of an autoregressive model. The partial autocorrelation of an AR(p)

processis zero at lag p+1 and greater. If the sample autocorrelation plot
indicates that an AR model may be appropriate, then the sample partial
autocorrelation plot is examined to help identify the order. We look for
the point on the plot where the partial autocorrelations essentially
become zero. Placing a 95% confidence interval for statistical
significance is helpful for this purpose.

The 95% confidence interval for the partial autocorrelations are at

+2/VN
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6.4.4.6.3. Partial Autocorrelation Plot

Sample Plot

Definition

Questions

Related
Techniques

Case Sudy

Southern Oscillations
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This partial autocorrelation plot shows clear statistical significance for
lags 1 and 2 (lag O isalways 1). The next few lags are at the borderline
of statistical significance. If the autocorrelation plot indicates that an
AR model is appropriate, we could start our modeling with an AR(2)
model. We might compare this with an AR(3) model.

Partial autocorrelation plots are formed by
Vertical axis:  Partial autocorrelation coefficient at lag h.
Horizontal axis: Timelagh (h=0,1, 2, 3, ...).

In addition, 95% confidence interval bands are typically included on the
plot.

The partia autocorrelation plot can help provide answersto the
following questions:

1. Isan AR model appropriate for the data?
2. If an AR moddl is appropriate, what order should we use?

Autocorrelation Plot
Run Sequence Plot
Spectral Plot

The partial autocorrelation plot is demonstrated in the Negiz data case
study.
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6.4.4.6.3. Partial Autocorrelation Plot

Software Partial autocorrelation plots are available in many genera purpose
statistical software programs including Dataplot.
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6.4.4.7. Box-Jenkins Model Estimation
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Estimating the parameters for the Box-Jenkins modelsis a quite
complicated non-linear estimation problem. For this reason, the
parameter estimation should be left to a high quality software program
that fits Box-Jenkins models. Fortunately, many commerical statistical
software programs now fit Box-Jenkins models.

The main approaches to fitting Box-Jenkins models are non-linear
|east squares and maximum likelihood estimation.

Maximum likelihood estimation is generally the preferred technique.
The likelihood equations for the full Box-Jenkins model are
complicated and are not included here. See (Brockwell and Davis,

1991) for the mathematical details.

The Negiz case study shows an example of the Box-Jenkins

model-fitting output using the Dataplot software. The two examples
later in this section show sample output from the SEMPLOT software.
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6.4.4.8. Box-Jenkins Model Validation
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Model validation for Box-Jenkins modelsis similar to model
validation for non-linear least squares fitting.

That is, the error term A is assumed to follow the assumptions for a
stable univariate process. The residuals should be random (i.e.,

independent) drawings from afixed distribution with a constant mean
and variance. If the Box-Jenkins model is agood model for the data,
the residual s should satisfy these assumptions.

If these assumptions are not satisfied, we need to fit a more
appropriate model. That is, we go back to the model identification step
and try to develop a better model. Hopefully the analysis of the
residuals can provide some clues as to a more appropriate model.

Asdiscussed in the EDA chapter, one way to assessif the residuals
from the Box-Jenkins model follow the assumptionsisto generate a
4-plot of the residuals.

An example of analyzing the residuals from a Box-Jenkins model is
given in the Negiz data case study.
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6.4.4.9. Example of Univariate Box-Jenkins Analysis
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6.4.4. Univariate Time Series Models

6.4.4.9.Example of Univariate Box-Jenkins Analysis

Example A computer software package is needed to do a Box-Jenkins time series analysis. The computer
with the output on this page will illustrate sample output from a Box-Jenkins analysis using the SEMSTAT

SEMPLOT statistical software program. It analyzes the series F data set in the Box, Jenkins and Reinsel text.
Software
The graph of the data and the resulting forecasts after fitting a model are portrayed below.

Output from other software programs will be similar, but not identical.

Model
Identification

Section
With the SEMSTAT program, you start by entering avalid file name or you can select afile

extension to search for files of particular interest. In this program, if you press the enter key, ALL
file namesin the directory are displayed.

Enter FILESPEC or EXTENSION (1-3 letters): To quit, press F10.
? bookf.bj

MAX MIN  MEAN VARIANCE NO.DATA
80.0000 23.0000 51.7086 141.8238 70
Do you wish to make transformations? y/n n
Input order of difference or O: 0
Input period of seasonality (2-12) or O: 0

Time Series. bookf.bj. Regular difference: 0 Seasonal Difference: 0
Autocorrelation Function for the first 35 lags

0 1. 0000 12 - 0. 0688 24 -0.0731
1 -0.3899 13 0. 1480 25 -0.0195
2 0. 3044 14 0. 0358 26 0. 0415
3 -0.1656 15 - 0. 0067 27 -0.0221
4 0. 0707 16 0.1730 28 0. 0889
5 -0.0970 17 -0. 7013 29 0. 0162
6 -0.0471 18 0. 0200 30 0. 0039
7 0. 0354 19 -0. 0473 31 0. 0046
8 -0.0435 20 0. 0161 32 -0.0248
9 -0.0048 21 0. 0223 33 -0.0259
10 0.0144 22 -0.0787 34 -0.0629
11 0. 1099 23 - 0. 0096 35 0. 0261
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6.4.4.9. Example of Univariate Box-Jenkins Analysis

Auto Correlation Function
wiith 35 % Confidence Limita

Model
Fitting
Section
Enter FILESPEC or EXTENSION (1-3 letters): To quit, press F10.
? bookf.bj
MAX  MIN MEAN VARIANCE NO. DATA
80.0000 23.0000 51.7086 141.8238 70
Do you wish to make transformations? y/n n

Input order of difference or O: 0
Input NUMBER of AR terms: 2
Input NUMBER of MA terms: 0

Input period of seasonality (2-12) or O: 0

*kkkkkkhkkkk*k OUTPUT SECT'ON *kkkkkkhkkkk*k
AR estimates with Standard Errors

Phi 1 : -0. 3397 0.1224
Phi 2 : 0. 1904 0.1223
Original Variance : 141. 8238
Resi dual Vari ance : 110. 8236
Coefficient of Determ nation: 21. 8582

***x*%* Taest on randommess of Residuals *****

The Chi - Squar e val ue = 11.7034
wi th degrees of freedom = 23
The 95th percentile = 35.16596

Hypot hesi s of randommess accept ed.
Press any key to proceed to the forecasting section.
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6.4.4.9. Example of Univariate Box-Jenkins Analysis

Forecasting
Section

Auto Correlation Function

wiith 35 % Confidence Limita

Defaul ts are obtained by pressing the enter key,

Default for

wi t hout i nput.

nunber of periods ahead from | ast period = 6.
Default for the confidence band around the forecast =

How many periods ahead to forecast? (9999 to quit...):
for the forecast :

Ent er confi dence | evel

90 Percent Confidence limts
For ecast

Next
71
72
73
74
75
76

43.
24.
36.
28.
33.
30.

Lower
8734
0239
9575
4916
7942
3487

61.
42.
56.
47.
53.
49.

1930
3156
0006
7573
1634
7573

78.
60.
75.
67.
72.
69.
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Upper
5706
6074
0438
0229
5326
1658

90%



6.4.4.9. Example of Univariate Box-Jenkins Analysis

Senes F with forecasts and 920%%6

confidence lumits
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6.4.4.10. Box-Jenkins Analysis on Seasonal Data
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6.4. Introduction to Time Series Analysis

6.4.4. Univariate Time Series Models

6.4.4.10.Box-Jenkins Analysis on Seasonal

Example with
the SEMPLOT
Software for a
Seasonal Time
Series

Model
| dentification
Section

Data

A computer software package is needed to do a Box-Jenkins time series
analysis for seasonal data. The computer output on this page will illustrate
sample output from a Box-Jenkins analysis using the SEMSTAT statisical

software program. It analyzes the series G data set in the Box, Jenkins and
Reinseltext.

The graph of the data and the resulting forecasts after fitting a modelare
portrayed below.

Enter FILESPEC or EXTENSION (1-3 letters):
To quit, press F10.

? bookg.bj
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6.4.4.10. Box-Jenkins Analysis on Seasonal Data

Senes GG of Box and Jenkins

200

00 S

400 4

200 5

144 ohgerrations

MAX MIN MEAN VARIANCE NO. DATA
622.0000 104.0000 280.2986 14391.9170 144

Do you wish to make transformations? y/n y
The following transformations are available:

1 Squareroot 2 Cube root

3 Natural log 4 Natural log log

5 Common log 6 Exponentiation

7 Reciprocal 8 Square root of Reciprocal
9 Normalizing (X-Xbar)/Standard deviation
10 Coding (X-Constant 1)/Constant 2

Enter your selection, by number: 3

Statistics of Transformed series:

Mean: 5.542 Variance 0.195
Input order of difference or O: 1

Input period of seasonality (2-12) or 0: 12
Input order of seasonal differenceor O0: O
Statistics of Differenced series:

Mean: 0.009 Variance 0.011

Time Series: bookg.bj.

Regular difference: 1 Seasonal Difference: 0

Autocorrelation Function for the first 36 lags
1 0. 19975 13 0. 21509 25 0. 19726
2 -0.12010 14 -0.13955 26 -0.12388
3 -0.15077 15 -0.11600 27 -0.10270
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6.4.4.10. Box-Jenkins Analysis on Seasonal Data

Analyzing
Autocorrelation
Plot for
Seasonality

- 0. 32207 16 -0.27894 28 -0.21099
- 0. 08397 17 -0.05171 29 -0.06536
0. 02578 18 0. 01246 30 0. 01573
-0.11096 19 -0.11436 31 -0.11537
-0. 33672 20 -0.33717 32 -0.28926
. 11559 21 -0.10739 33 -0.12688
-0. 10927 22 -0.07521 34 -0.04071
0. 20585 23 0. 19948 35 0.14741
0. 84143 24 0. 73692 36 0. 65744

PR e
NP OOWW~NO® U A
1
o

Autocorrelation Function of Series (G

0.3~

DAY A e

after ] "regular" difference

If you observe very large correlations at lags spaced n periods apart, for
example at lags 12 and 24, then there is evidence of periodicity. That effect
should be removed, since the objective of the identification stage isto reduce
the correlations throughout. So if simple differencing was not enough, try
seasonal differencing at a selected period. In the above case, the period is 12.
It could, of course, be any value, such as 4 or 6.

The number of seasonal termsisrarely more than 1. If you know the shape of
your forecast function, or you wish to assign a particular shape to the forecast
function, you can select the appropriate number of terms for seasonal AR or
seasonal MA models.

The book by Box and Jenkins, Time Series Analysis Forecasts and Control
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6.4.4.10. Box-Jenkins Analysis on Seasonal Data

(the later edition is Box, Jenkins and Reinsel, 1994) has a discussion on these
forecast functions on pages 326 - 328. Again, if you have only afaint notion,
but you do know that there was a trend upwards before differencing, pick a
seasonal MA term and see what comes out in the diagnostics.

The results after taking a seasonal difference look good!

Autocorrelation of Sentes G

after | "regular" and L "seaszonal" difference

Model Fitting Now we can proceed to the estimation, diagnostics and forecasting routines.
Section The following program is again executed from a menu and issues the
following flow of output:

Enter FILESPEC or EXTENSION (1-3 letters):
To quit press F10.

? bookg.bj

MAX MIN MEAN VARIANCE NO. DATA
622.0000 104.0000 280.2986 14391.9170 144
y (we selected a square root
Do you wish to make transformation because a closer
transformations? y/n inspection of the plot revealed
Increasing variances over time)
Statistics of Transformed series.

Mean: 5.542 Variance 0.195
Input order of difference or O: 1
Input NUMBER of AR terms: Blank defaultsto O
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6.4.4.10. Box-Jenkins Analysis on Seasonal Data

Output Section

Input NUMBER of MA terms: 1

Input period of seasonality (2-12) or 12

0:

Input order of seasonal difference or 1

0:

Input .NUM BER of seasonal AR Blank defaults to 0
terms:

Input NUMBER of seasonal MA 1

terms:

Statistics of Differenced series:

Mean: 0.000 Variance 0.002
Pass 1SS 0.1894

Pass 2 SS. 0.1821

Pass 3 SS. 0.1819

Estimation is finished after 3 Marquardt iterations.

MA estimates with Standard Errors
Thetal: 0.3765 0.0811

Seasonal MA estimates with Standard Errors
Thetal: 0.5677 0.0775

Original Variance ; 0.0021
Residual Variance (MSE) : 0.0014
Coefficient of Determination:  33.9383

AIC criterialn(SSE)+2k/n . -1.4959
BIC criterialn(SSE)+In(n)k/n:  -1.1865

k=p+q+ P+ Q+ d+ sD =number of estimates + order of regular
difference + product of period of seasonality and seasonal difference.

n isthe total number of observations.
Inthisproblemk and nare: 15 144

**%** Test on randomness of Residuals ** ***
TheBox-Ljung value = 28.4219

The Box-Piercevalue = 24.0967

with degrees of freedom = 30

The 95th percentile = 43.76809

Hypothesis of randomness accepted.
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6.4.4.10. Box-Jenkins Analysis on Seasonal Data

Forgcasti ng Defaults are obtained by pressing the enter key, without input.
Section Default for number of periods ahead from last period = 6.

Default for the confidence band around the forecast = 90%.
Next Period Lower  Forecast Upper

145 423.4257 450.1975 478.6620
146 382.9274 411.6180 442.4583
147 407.2839 441.9742 479.6191
148 437.8781 479.2293 524.4855
149 444.3902 490.1471 540.6153
150 491.0981 545.5740 606.0927
151 583.6627 652.7856 730.0948
152 553.5620 623.0632 701.2905
153 458.0291 518.6510 587.2965
154 417.4242 475.3956 541.4181
155 350.7556 401.6725 459.9805
156 382.3264 440.1473 506.7128
Last 36 points of Senes G
200
£00 -
400 4
200 -
i T T !
with 12 Forecasts aud a 90%% C1
NIST . .
o TOOLS & AIDS SEARCH BACK MNEXT
SEMATECH HoMe  [Tooisaa ! '
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6.4.5. Multivariate Time Series Models
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6. Process or Product Monitoring and Control

6.4. Introduction to Time Series Analysis

6.4.5. Multivariate Time Series Models

If each time
series
observation
is a vector
of numbers,
you can
model them
using a
multivariate
form of the
Box-Jenkins
model

The multivariate form of the Box-Jenkins univariate modelsis
sometimes called the ARMAYV model, for AutoRegressive Moving
Average Vector or simply vector ARMA process.

The ARMAV mode for a stationary multivariate time series, with a
zero mean vector, represented by

— I
Fr = (mlhmﬂh -“;mﬂ.i) — oo <t < 0o

isof theform
Xy = Q1T+ ol gt T Pplyy Ty
—tha;_ | — gy 9 — ... — gty
where
o X¢and a; aren x 1 column vectors

* ‘}ﬁk :{¢k.ij}; kzlpgpuwp
'HF: :{Hk.{j}; kzl;E;‘“?q
aren x n matrices for autoregressive and moving average
parameters

° E[a.t] =0

» E[a;,a.] =D, the dispersion or covariance matrix
Asan example, for abivariate serieswithn=2, p=2,and g =1, the

ARMAV(2,1) model is:
it _ fﬁu.u r}fu.m Fli—1 +
Tog ?51 21 ?51.22 Xor_1
E;?5'2.11 EFf'2.12 X2
?5221 f;’*z.zz Toaf_2

g Priy Pz T |
+( )_( ‘f’lhm)(ﬂm_l)

oy ?5121
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6.4.5. Multivariate Time Series Models

Estimation The estimation of the matrix parameters and covariance matrix is

of complicated and very difficult without computer software. The
parameters estimation of the Moving Average matricesis especialy an ordeal. If we
and _ opt to ignore the MA component(s) we are left with the ARV model
covariance given by:
gi‘?ftiréén Ty = 1Ty +Pokp o+ .o+ DTy + A

where

o X{isavector of observations, x4, X», ..., X, a timet

« & isavector of whitenoise, a;, ay, ... , a, at timet

o XXXX iSaannx nmatrix of autoregressive parameters

« E[a]=0

« E[a,a,] =D, the dispersion or covariance matrix
A model with p autoregressive matrix parametersis an ARV (p) model
or avector AR model.

The parameter matrices may be estimated by multivariate least squares,
but there are other methods such as maximium likelihood estimation.

Interesting There are afew interesting properties associated with the phi or AR
propertiesof  parameter matrices. Consider the following ARV (2) model:
parameter

matrices As an example, for abivariate serieswithn =2, p=2,and q =1, the

ARMAV(2,1) moded is:

Xy _ ?51.11 ¢'L12 7 | Ep‘i'z.u ?52.12 i o iy
(’Ht ) _(?5121 ?51.22)(1-’&—1 ) +( Po21 Pao )(Ha—z)—'_(Em)

Without loss of generality assume that the X seriesisinput and the Y
series are output and that the mean vector = (0,0).

Therefore, tranform the observation by subtracting their respective
averages.

Diagonal The diagonal terms of each Phi matrix are the scalar estimates for each
termsof Phi  series, in this case:

matrix : :
'ﬁl_ 11> ‘?52_ 11 for the input series X,

'zﬁz_ 11> ‘35.2.22 for the output series.
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6.4.5. Multivariate Time Series Models

Transfer The lower off-diagona elements represent the influence of the input on
mechanism the output.

Thisis called the "transfer" mechanism or transfer-function model as
discussed by Box and Jenkinsin Chapter 11. The g terms here

correspond to their & terms.

The upper off-diagonal terms represent the influence of the output on
the input.

Feedback Thisis called "feedback". The presence of feedback can also be seen as
a high value for a coefficient in the correlation matrix of the residuals. A
"true" transfer model exists when there is no feedback.

This can be seen by expressing the matrix form into scalar form:

=gk T @K gty Y, tay
Yo=YtV gt X T X

Delay Finally, delay or "dead' time can be measured by studying the lower
off-diagonal elements again.

If, for example, g o1 is non-significant, the delay is 1 time period.

NIST
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6.4.5.1. Example of Multivariate Time Series Analysis
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6.4. Introduction to Time Series Analysis

6.4.5. Multivariate Time Series Models

6.4.5.1. Example of Multivariate Time Series

A
multivariate
Box-Jenkins
example

Plots of
input and
output
series

Analysis

As an example, we will analyze the gas furnace data from the Box-Jenkins
textbook. In this gas furnace, air and methane were combined in order to
obtain amixture of gases which contained CO, (carbon dioxide). The

methane gas feedrate constituted the input series and followed the process
Methane Gas Input Feed = .60 - .04 X(t)

the CO, concentration was the output, Y(t). In this experiment 296 successive

pairs of observations (X; Y;) were read off from the continuous records at

9-second intervals. For the example described below, the first 60 pairs were
used. It was decided to fit a bivariate model as described in the previous
section and to study the results.

The plots of the input and output series are displayed below.

Biwvariate Analvsis on a Gas Furnacs
{Input gas rate)

I EE &= €E M la 3T oal al af ap I 5 SE

= e duerce
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6.4.5.1. Example of Multivariate Time Series Analysis

Bivariate Analyvsis <f a Gas Purnace
{Cutlet Gas in & O

&
35 A
a0 5

dﬂ rmerrrrerrrrrrrerrrrrerrrrerrrrrrrrrrrrrrrrerrrrerrrrerrrirrrrd

1 3 o 1= 17 21 25 2 33 3T 41 45 49 53 57 0O

Se Guerce

From a suitable Box-Jenkins software package, we select the routine for
multivariate time series analysis. Typical output information and prompts for
input information will look as follows:

SEMPLOT MULTIVARIATE AUTOREGRESSION

output
Enter FILESPEC  GAS.BJ
Explanation of Input
How many series?: 2  theinput and the output series
Which order? . 2 thismeansthat we consider times
t-1 and t-2 in the moddl , whichis
a special case of the general ARV

model
SERIES MAX MIN MEAN VARIANCE
1 56.8000 45.6000 50.8650 9.0375
2 2.8340 -1.5200 0.7673 1.0565

NUMBER OF OBSERVATIONS: 60.
THESE WILL BE MEAN CORRECTED. sowe don't haveto
fit the means

OPTION TO TRANSFORM DATA
Transformations? : y/N
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6.4.5.1. Example of Multivariate Time Series Analysis

OPTION TO DETREND DATA
Seasonal adjusting? : y/N

FITTING ORDER: 2

OUTPUT SECTION

the notation of the output follows the notation of the previous
section

MATRIX FORM OF ESTIMATES

¢l
1.2265 0.2295
-0.0755 1.6823

2
-0.4095 -0.8057
0.0442 -0.8589

Estimate Std. Err t value Prob(t)

Con1 -0.0337 0.0154 -2.1884 0.9673
Con2 0.003 0.0342 0.0914 0.0725

@111 12265 00417 29.4033 >.9999
¢ 112 0.2295 0.0530 4.3306 0.9999
@121 -0.0755 0.0926 -0.8150 0.5816
@122 16823 0.1177 14.2963 > .9999
¢ 211 -0.4005 0.0354 -11.5633>.9999
212 -0.8057 0.0714 -11.2891 > .9999
@221 00442 00786 0.5617 0.4235
222 -0.8580 0.1585 -5.4194 >.9999

Statistics on the Residuals
MEANS
-0.0000 0.0000

COVARIANCE MATRIX
0.01307 -0.00118
-0.00118  0.06444

CORRELATION MATRIX
1.0000 -0.0407
-0.0407 1.0000
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6.4.5.1. Example of Multivariate Time Series Analysis

SERIES ORIGINAL RESIDUAL COEFFICIENT OF
VARIANCE VARIANCE DETERMINATION
1 9.03746 0.01307 99.85542
2 1.05651 0.06444 93.90084

Thisillustrates excellent univariate fits for the individual series.

This portion of the computer output lists the results of testing for
Independence (randomness) of each of the series.

Theoretical Chi-Square Value:
The 95th percentile = 35.16595
for degrees of freedom = 23

Test on randomness of Residuals for Series: 1
The Box-Ljung value = 20.7039 Both Box-Ljung and

Box-Pierce

The Box-Piercevalue = 16.7785  testsfor randomness of
residuals

Hypothesis of randomness accepted.  using the chi-square test on
the

sum of the squared residuals.

Test on randomness of Residualsfor Series. 2

The Box-Ljung value = 16.9871  For example, 16.98 < 35.17
The Box-Piercevalue = 13.3958 and 13.40< 35.17
Hypothesis of randomness accepted.

The forecasting method is an extension of the model and follows the
theory outlined in the previous section. Based on the estimated variances
and number

of forecasts we can compute the forecasts and their confidence limits.
The user, in this software, is able to choose how many forecasts to
obtain, and at what confidence levels.

Defaults are obtained by pressing the enter key, without input.
Default for number of periods ahead from last period = 6.
Default for the confidence band around the forecast = 90%.

How many periods ahead to forecast? 6
Enter confidence level for the forecast limits : .90:

SERIES: 1
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6.4.5.1. Example of Multivariate Time Series Analysis

90 Percent Confidence limits

Next Period Lower

61
62
63
64
65
66

Forecast Upper

51.0534  51.2415
50.9955  51.3053
50.5882  50.9641
49.8146  50.4561
48.7431  49.9886
476727  49.6864
SERIES: 2

51.4295
51.6151
51.3400
51.0976
51.2341
51.7001

90 Percent Confidence limits

Next Period Lower

61
62
63
64
65
66
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0.8142
04777
0.0868
-0.2661
-0.5321
-0.7010

Forecast Upper

1.2319
1.2957
1.2437
1.1300
1.0066
0.9096
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6.5.1. What do we mean by "Normal" data?
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6.5.1.What do we mean by "Normal” data?

The Normal
distribution
model

Normal
probability
distribution

Parameters
of normal
distribution

Shapeis
symmetric
and unimodal

"Normal" data are data that are drawn (come from) a population that
has a normal distribution. This distribution is inarguably the most
important and the most frequently used distribution in both the theory
and application of statistics. If X isanormal random variable, then the
probability distribution of X is

1f x—py
1 4%
Jﬁ,l'lﬁ

The parameters of the normal distribution are the mean 44 and the

standard deviation ¢r (or the variance &¥2). A specia notation is
employed to indicate that X is normally distributed with these
parameters, namely

X~N(P,,J) OI‘X~N(_H,,JZ).

Fixi=

- S <

The shape of the normal distribution is symmetric and unimodal. It is
called the bell-shaped or Gaussian distribution after its inventor, Gauss
(although De Moivre also deserves credit).

The visual appearance is given below.
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Property of
probability
distributions
Isthat area
under curve
equals one

Inter pretation
of 7

The
cumulative
normal
distribution

6.5.1. What do we mean by "Normal" data?

The pormal Distributlon
Ly

m

A property of aspecia class of non-negative functions, called
probability distributions, is that the area under the curve equals unity.
One finds the area under any portion of the curve by integrating the
distribution between the specified limits. The area under the
bell-shaped curve of the normal distribution can be shown to be equal
to 1, and therefore the normal distribution is a probability distribution.

Thereisasimple interpretation of

68.27% of the population fall between Ji +-1a
95.45% of the population fall between gy +/- 2.7
99.73% of the population fall between y1 +/- 3 ¥

The cumulative normal distribution is defined as the probability that
the normal variate isless than or equal to somevauev, or

! e_%[?]i X

LTl 2 AT

P{X v} =FO) = [

Unfortunately thisintegral cannot be evaluated in closed form and one
has to resort to numerical methods. But even so, tablesfor all possible
values of 4 and & would be required. A change of variables rescues

the situation. We let

X4
z= .

LT
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6.5.1. What do we mean by "Normal" data?

Tables for the
cumulative
standard
normal
distribution

NIST
SEMATECH

Now the evaluation can be made independently of ;4 and &; that is,
P{X vl =P {z [ "} - ¢["" "]
LF e

where §: (.) isthe cumulative distribution function of the standard
normal distribution (s, ).

Tables of the cumulative standard normal distribution are givenin
every statistics textbook and in the handbook. A rich variety of

approximations can be found in the literature on numerical methods.

For example, if y1 = 0 and g = 1 then the area under the curve from s -
1l to it 1, istheareafromO0- 1to 0+ 1, which is 0.6827. Since
most standard normal tables give areato the left of the lookup value,
they will havefor z=1 an area of .8413 and for z= -1 an area of .1587.

By subtraction we obtain the area between -1 and +1 to be .8413 -
1587 = .6827.
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6.5.2. What do we do when the data are "non-normal"?
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6.5.2.What do we do when the data are
"non-normal"?

Oftenitis
possibleto
transform
non-normal
data into
approximately
normal data

The Box-Cox
Transformation

Non-normality isaway of life, since no characteristic (height,
weight, etc.) will have exactly anormal distribution. One strategy to
make non-normal data resemble normal datais by using a
transformation. There is no dearth of transformations in statistics; the
issue iswhich one to select for the situation at hand. Unfortunately,
the choice of the "best" transformation is generally not obvious.

Thiswas recognized in 1964 by G.E.P. Box and D.R. Cox. They
wrote a paper in which a useful family of power transformations was
suggested. These transformations are defined only for positive data
values. This should not pose any problem because a constant can
always be added if the set of observations contains one or more
negative values.

The Box-Cox power transformations are given by

A1
x[,?,j:% A0
) =1n(x) A=0

Given the vector of data observations x = Xy, Xy, ...X,, One way to

select the power A is to use the A that maximizes the logarithm of the
likelihood function
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6.5.2. What do we do when the data are "non-normal"?

The logarithm
of the
likelihood
function

Confidence
interval for.\

Example of the
Box-Cox
scheme

Sample data

X

e H}l=—§1n i(;ﬁ[ﬂ)_ [WJ +|:;-1—1:]i1nx,-

iml M iml

where

_ 1 &
E(A)= =D m(A)
L
is the arithmetic mean of the transformed data.

In addition, a confidence interval (based on the likelihood ratio

statistic) can be constructed for A asfollows: A set of A values that
represent an approximate 100(1- ¢x)% confidence interval for A is
formed from those A that satisfy

Fle A2 fx =54,

& 7
where 1 denotes the maximum likelihood estimator for A and

isthe upper 100x(1-a) percentile of the chi-square distribution with 1
degree of freedom.

To illustrate the procedure, we used the data from Johnson and
Wichern's textbook (Prentice Hall 1988), Example 4.14. The
observations are microwave radiation measurements.

.15.09.18.10.05.12.08
.05.08.10.07.02.01.10
.10.10.02.10.01 .40.10
.05.03.05.15.10.15.09
.08.18.10.20.11 .30.02
.20.20.10.30.40.30.05
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6.5.2. What do we do when the data are "non-normal"?

Table of The values of the log-likelihood function obtained by varying A from
log-likelihood -2.0to 2.0 are given below.
values for
LLF LLF LLF
various values A A A
of A -2.0 7.1146 -0.6 89.0587 0.7 103.0322

-1.914.1877-0.5 92.7855 0.8 101.3254
-1.821.1356 -0.4 96.0974 0.9 99.3403
-1.727.9468 -0.3 98.9722 1.0 97.1030
-1.634.6082 -0.2 101.3923 1.1 94.6372
-1.541.1054 -0.1 103.3457 1.2 91.9643
-1.447.4229 0.0 104.8276 1.3 89.1034
-1.353.5432 0.1 105.8406 1.4 86.0714
1.2 59.4474 0.2 106.3947 1.5 82.8832
-1.165.1147 0.3 106.5069 1.6 79.5521
-0.975.6471 0.4 106.1994 1.7 76.0896
-0.8 80.4625 0.5 105.49851.8 72.5061
-0.7 84.9421 0.6 104.43301.9 68.8106

Thistable shows that } = .3 maximizes the log-likelihood function
(LLF). Thisbecomes 0.28 if a second digit of accuracy is calculated.

The Box-Cox transform is also discussed in Chapter 1. The criterion

used to choose lamda in that discussion is the value of lamda that
maximizes the correl ation between the transformed x-values and the
y-values when making a normal probability plot of the (transformed)
data
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6.5.3. Elements of Matrix Algebra
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6.5.3. Elements of Matrix Algebra

Elementary Matrix Algebra

Basic Vectors and matrices are arrays of numbers. The algebrafor symbolic
definitions operations on them is different from the algebra for operations on

and scalars, or single numbers. For example thereis no division in matrix
operationsof  agebra, although there is an operation called "multiplying by an
matrix inverse". It is possible to express the exact equivaent of matrix algebra
algebra - equations in terms of scalar algebra expressions, but the results look
needed for rather messy.

multivariate

It can be said that the matrix algebra notation is shorthand for the

analysis :
y corresponding scalar longhand.

Vectors A vector isacolumn of numbers

- o -
a= -
AT
-Iﬂ.F:I -
The scalars g; are the elements of vector a.
Transpose The transpose of a, denoted by &', is the row arrangement of the

elements of a.

a'=[r:11 By - czp]
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6.5.3. Elements of Matrix Algebra

Sum of two The sum of two vector sisthe vector of sums of corresponding
vectors elements.

-cI1+b1-

&g+ by

a+h=

The difference of two vectorsisthe vector of differences of
corresponding elements.

Product of The product a'b isascalar formed by
ab

a'b:[czlb1+ Gobn + - +f:1pbp]

which may be written in shortcut notation as

¥
c= Z ;&

im]
where g; and b; are the ith elements of vector a and b respectively.

Product of The product ab' isasquare matrix
ab'

alty  aby - ﬂlbp
. - &
e

'ﬂpbl 'ﬂp‘bz ﬂp‘bp
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6.5.3. Elements of Matrix Algebra

Product of

scalar times a

vector

Amatrixisa
rectangular
table of
numbers

Matrix
addition and
subtraction

The product of ascalar k, times avector a is k times each element of a

ia=ak =

A matrix is arectangular table of numbers, with p rows and n columns.
It isalso referred to as an array of n column vectors of length p. Thus

20

“-'3_21

&l

rl

&l

7

Lo

pa

D
“an

Fary

isap by n matrix. The typical element of A is &;, denoting the element
of row i and columnj.

Matrices are added and subtracted on an element by element basis.

Thus

A+B=

[y +By)
f3’21'_"’5'21

a.+b

pl »l

&y T4,
oy + 0o

&l

ra

+ bpz
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6.5.3. Elements of Matrix Algebra

Matrix Matrix multiplication involves the computation of the sum of the

multiplication  products of elements from arow of the first matrix (the premultiplier
on the left) and a column of the second matrix (the postmultiplier on
the right). This sum of productsis computed for every combination of
rows and columns. For example, if Aisa2x 3matrixand Bisa3 x 2
matrix, the product AB is

B apfyy + b+t anhyy +aphy +ashy

AB-=
by + @by + by By by, tagby,

Thus, the product isa 2 x 2 matrix. This came about as follows. The
number of columns of A must be equal to the number of rows of B. In
this case thisis 3. If they are not equal, multiplication isimpossible. |f
they are equal, then the number of rows of the product AB isequal to
the number of rows of A and the number of columnsis equal to the
number of columns of B.

Example of It follows that the result of the product BA isa 3 x 3 matrix
3x2 matrix
multiplied by

a2x3
o+ oy Bt han  Byds + B,

BA = |bya +bpty  Bap+hady;  byan+bpan
by +bptty  By@p+ Bty Byas+ B,

General case  Ingenerd, if Aisak x p matrix and B isap x n matrix, the product

for matrix AB isakxnmatrix. If k= n, then the product BA can also be formed.

multiplication  We say that matrices conform for the operations of addition,
subtraction or multiplication when their respective orders (numbers of
row and columns) are such as to permit the operations. Matrices that do
not conform for addition or subtraction cannot be added or subtracted.
Matrices that do not conform for multiplication cannot be multiplied.
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6.5.3.1. Numerical Examples
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6.5.3.1.Numerical Examples

Numerical Numerical examples of the matrix operations described on the
examples of previous page are given here to clarify these operations.
matrix

operations

Sample matrices  If

506 R
= anid B =
7 1 5
then
Matrix addition,
subtr_apti on, and . D 4
multipication A+B and A_B
4 s 2
and

21 40 21 32
AB= atid BA=
15 41 20 41
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6.5.3.1. Numerical Examples

Multiply matrix
by a scalar

Pre-multiplying
matrix by
transpose of a
vector

Post-multiplying
matrix by vector

Quadratic form

To multiply aa matrix by agiven scalar, each element of the matrix
Ismultiplied by that scalar

10 12
A= atid SB=
14

Pre-multiplying a p x n matrix by the transpose of a p-element vector
yields a n-element transpose

-:'=a'B=[c11 ﬂg] ?21 ?; i;]z[cl 5 r:3]

Post-multiplying ap x n matrix by an n-element vector yields an
n-element vector

&

By B "57'13%='31
’37’21"57'22"57’23£IB €

It is not possible to pre-multiply a matrix by a column vector, nor to
post-multiply a matrix by arow vector. The matrix product a'Ba
yields ascalar and is called a quadratic form. Note that B must be a
square matrix if a'Ba isto conform to multiplication. Hereis an
example of aquadratic form

aBa=[2 3][; ?”i]:[n ?]E]:atz

c=EBA =
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6.5.3.1. Numerical Examples

Inverting a The matrix analog of division involves an operation called inverting

matrix a matrix. Only square matrices can be inverted. Inversionisa
tedious numerical procedure and it is best performed by computers.
There are many waysto invert amatrix, but ultimately whichever
method is selected by a program isimmaterial. If you wish to try one
method by hand, a very popular numerical method is the
Gauss-Jordan method.

| dentity matrix To augment the notion of the inverse of amatrix, A-1 (A inverse) we
notice the following relation

A-IA=AA1l=|
| isamatrix of form
1 0 0 0
o1 0 )
I=|0 0O 1 )
o0 0 1

| iscalled the identity matrix and is a special case of a diagonal
matrix. Any matrix that has zerosin al of the off-diagonal positions
Isadiagona matrix.
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6.5.3.2. Determinant and Eigenstructure
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6.5.3.2. Determinant and Eigenstructure

A matrix
determinant is
difficult to define
but a very useful
number

Sngular matrix

Determinant of
variance-covariance
matrix

Unfortunately, not every square matrix has an inverse (although
most do). Associated with any square matrix is a single number
that represents a unique function of the numbersin the matrix.
This scalar function of a square matrix is called the determinant.
The determinant of a matrix A is denoted by |A|. A formal
definition for the deteterminant of a square matrix A = (g;) is

somewhat beyond the scope of this Handbook. For
completeness, the following is offered without explanation:

A= 3 tauaz;. .. amg

where the summation is taken over all possible permutations of
the numbers (1, 2, ..., m) with aplus sign if the permutation is
even and aminussignif it isodd.

Asisthe case of inversion of a square matrix, calculation of the
determinant is tedious and computer assistance is needed for
practical calculations. If the determinant of the (square) matrix is
exactly zero, the matrix is said to be singular and it has no
inverse,

Of great interest in statistics is the determinant of a square
symmetric matrix D whose diagonal elements are sample
variances and whose off-diagonal elements are sample
covariances. Symmetry means that the matrix and its transpose
areidentical. (i.e, A=A"). Anexampleis
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6.5.3.2. Determinant and Eigenstructure

Characteristic
eguation

Definition of the
characteristic
equation for 2x2
matrix

Eigenvalues of a
matrix

Eigenvectors of a
matrix

2
&1 Sieafiz T BERp
2
N S 5o SRR L
D - - - -
S S 5.8 F 52
| l'pl prat pd 7o

where s, and s, are sample standard deviations and rj; is the
sample correlation.

D isthe sample variance-covariance matrix for observations of
amultivariate vector of p elements. The determinant of D, in
this case, is sometimes called the generalized variance.

In addition to a determinant and possibly an inverse, every
square matrix has associated with it a characteristic equation.
The characteristic equation of a matrix isformed by subtracting
some particular value, usually denoted by the greek letter }
(lambda), from each diagonal element of the matrix, such that
the determinant of the resulting matrix is equal to zero. For
example, the characteristic equation of a second order (2 x 2)
matrix Amay be written as

A - AT =

) gy — A

For amatrix of order p, there may be as many as p different
valuesfor ) that will satisfy the equation. These different values
are called the eigenvalues of the matrix.

Associated with each eigenvalue is a vector, v, called the
eigenvector. The eigenvector satisfies the equation

Av = Jv
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6.5.3.2. Determinant and Eigenstructure

Eigenstructure of a If the complete set of eigenvaluesis arranged in the diagonal
matrix positions of adiagona matrix V, the following relationship
holds

AV =VL

This equation specifies the complete eigenstructure of A.
Eigenstructures and the associated theory figure heavily in
multivariate procedures and the numerical evaluation of L and V
Isacentral computing problem.
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6.5.4. Elements of Multivariate Analysis

Multivariate Multivariate analysisis a branch of statistics concerned with the

analysis analysis of multiple measurements, made on one or several samples of
individuals. For example, we may wish to measure length, width and
weight of a product.

Multiple A multiple measurement or observation may be expressed as
measurement,
- x=[4 2 0.6]
observation, referring to the physical properties of length, width and weight,
asrow or respectively. It is customary to denote multivariate quantities with bold
column letters. The collection of measurements on x is called avector. In this
vector caseit isarow vector. We could have written x as a column vector.
4
x=| 2
0.6
Matrix to If we take several such measurements, we record them in arectangular
represent array of numbers. For example, the X matrix below represents 5
more than observations, on each of three variables.
one multiple
measur ement
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6.5.4. Elements of Multivariate Analysis

4.0 2.0 60
42 21 59
X=|39 20 .58
43 21 62
41 22 .63

By In this case the number of rows, (n =5), isthe number of observations,
convention, and the number of columns, (p = 3), isthe number of variablesthat are
rows measured. The rectangular array is an assembly of n row vectors of
typically length p. Thisarray is called a matrix, or, more specifically, an by p
represent matrix. Its nameis X. The names of matrices are usually writtenin

observations  bold, uppercase letters, asin Section 6.5.3. We could just as well have
and columns  written X asap (variables) by n (measurements) matrix as follows:
represent

variables

40 42 39 43 41
X=120 21 20 21 22
60 39 38 .62 .63

Definition of A matrix with rows and columns exchanged in this manner is called the

Transpose transpose of the original matrix.
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6.5.4.1. Mean Vector and Covariance Matrix

Sample data
matrix

Definition of
mean vector
and
variance-
covariance
matrix
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Thefirst step in analyzing multivariate data is computing the mean

vector and the variance-covariance matrix.

Consider the following matrix:

(4.0
4.2
X=[39
43
4.1

2.0
21
2.0
21
2.2

60
a9
58
62
03

The set of 5 observations, measuring 3 variables, can be described by its
mean vector and variance-covariance matrix. The three variables, from
left to right are length, width, and height of a certain object, for
example. Each row vector X; is another observation of the three

variables (or components).

The mean vector consists of the means of each variable and the
variance-covariance matrix consists of the variances of the variables
along the main diagonal and the covariances between each pair of
variables in the other matrix positions.
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6.5.4.1. Mean Vector and Covariance Matrix

Mean vector
and
variance-
covariance
matrix for
sample data
matrix

Centroid,
dispersion
matix

NIST
SEMATECH

The results are:
xX= :4.1[] 2.08 .604]

0.025 0.0075  0.00175
s =10.0075 0.0070 0.00135
0.00175 0.00135 0.00043

where the mean vector contains the arithmetic averages of the three
variables and the (unbiased) variance-covariance matrix Sis calculated

by
1 & r

S=—>(X-X)(X-X)

.}3_1!'_1

where n = 5 for this example.

Thus, 0.025 isthe variance of the length variable, 0.0075 isthe
covariance between the length and the width variables, 0.00175 isthe
covariance between the length and the weight variables, 0.007 isthe
variance of the width variable, 0.00135 is the covariance between the
width and weight variables and .00043 is the variance of the weight
variable.

The mean vector is often referred to as the centroid and the
variance-covariance matrix as the dispersion or dispersion matrix. Also,
the terms variance-covariance matrix and covariance matrix are used
interchangeably.
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6.5.4.2. The Multivariate Normal Distribution
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6.5.4.2. The Multivariate Normal Distribution

Multivariate  When multivariate data is analyzed, the multivariate normal model isthe
normal most commonly used model.

model . . o
The multivariate normal distribution model extends the univariate normal

distribution model to fit vector observations.

Defintionof A p-dimensional vector of random variables

anL:‘I:ri]\;Jariate X:XI;XE;-“?XP _m{:Xi{:m;izli“‘?P
distribution Is said to have a multivariate normal distribution if its density function f(X)

is of the form

f[:){:] — fl:)(h -XE; ey XF} —

(2m)~#2 exp {—L(X —m)'E~H (X —m)}
wherem = (my, ..., m<p) isthe vector of meansand ¥; isthe

variance-covariance matrix of the multivariate normal distribution. The
shortcut notation for this density is

X = Ny(m, %)
Univariate When p = 1, the one-dimensional vector X = X; has the normal distribution
normal with mena m and variance 2
distribution

1;-.'—,1;i
SFix)= 1 E_E[T]l — 00 < x <0

Jﬂ,l'lﬂ
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6.5.4.2. The Multivariate Normal Distribution

Bivariate When p = 2, X = (X4,Xy) has the bivariate normal distribution with a

normal two-dimensional vector of means, m = (m;,my,) and covariance matrix
distribution
Uf T2
E — o
ol | Jﬂ
The correlation between the two random variablesis given by
U9
J1Tg
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6.5.4.3. Hotelling's T squared
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6.5.4.3.Hotelling's T squared

Measures
"distance"
from target
using
covariance
matrix

Definition of
T2

Theoretical
covariance
matrix is
diagonal

The Hotelling T 2 distance

A measure that takes into account multivariate covariance structures was
proposed by Harold Hotelling in 1947 and is called Hotelling's T 2. It
may be thought of as the multivariate counterpart of the Student'st. The
T2 distance is a constant multiplied times a quadratic form. For one
group (or subgroup), this quadratic form is obtained as follows:

Start from the data matrix, X, (N X p element observations)

« Definealx p target vector, m.
o Computethe 1 x p vector of column averages, x

« Compute the covariance matrix, Sand itsinverse, S1. Here Sis
the unbiased covariance estimate defined by

: i(’ir - %) (%~ %)

."3_1!'_1

2 =

« Compute the matrix of deviations (x-m ) and its transpose, (x-m)’
« Thequadratic formisgiven by Q = (x-m) S1(x-m)
The formulafor the Hotelling T 2 is:
T2=nQ =n (x-m)'S(x-m)
The constant n is the size of the sample from which the covariance

matrix was estimated. If no targets are available, use the grand mean,
which for one subgroup is the mean of the p column means..

It should be mentioned that for independent variables the theoretical
covariance matrix is adiagonal matrix and Hotelling's T 2 becomes
proportional to the sum of the squared standardized variables.

http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc543.htm (1 of 5) [5/7/2002 4:28:24 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm

6.5.4.3. Hotelling's T squared

Higher T2 In general, the higher the T 2 value, the more distant is the observation
values from the target.

indicate N

greater A summary of the estimation procedure for the mean vector and the

covariance matrix for more than one subgroup follows:

dist
frl orﬁrt]ﬁz L et m be the number of available subgroups (or samples). Each
tarqet val subgroup has n observations on p variables. The subgroup means and
get value :
variances are calculated from
Estimation _ li Jg=ld,-.p
x = — .
;)rmulasfor L. j_lx{;x F=12m
subgroups,
each having | Z1 9
n 1 _ T I i
observations S5 ,-,3_1;(3-1?"* x-i"*'*) {;:=1,2,__.,m
onp
variables Xjjk is theith observation on the jth variable in subgroup k. The

covariance between variable j and variable h in subgroup k is:

1 & _ _ k=12, _m
SM =Eﬁ_1(xirﬁ'«_xﬁ;)[?%m _-"fat) {j?’fﬁz

The statistics fﬁ,Sji

. and Sy are averaged over

all #2 samples:

_ 1 & _

Ry A E
B il

S lZSfE F=L2,p
FPE il

and
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6.5.4.3. Hotelling's T squared
The (fj) are the elements of the vector X, and the

p x p average of sample covariance matrices 81z

% % % - &,

| B S
3

T

SF_

& 18 an unbiassed estimmate of =

when the process 15 1n control.

T2 lends The T 2 distances lend themselves readily to graphical displaysand, asa

itself to result, the T 2-chart is the most popular among all multivariate control
charts. Let us examine how this works: For one group (or subgroup) we

graphical
display have:
T2 =:rz|:x—mjjf5_1 Iix—mjj
}{=(:={1,---,}=:p]|, anindividual vector measurement
m = [ml,---,mf"),the vector of targets
8! =istheinverse of the covariance matrix
n=the sample size
When observations are grouped into k (rational) subgroups each of size
n, we can compute a statistic T 2, for each subgroup, that measures the
deviations of the subgroup averages from the target vector m
R P A
T =a(%-m) 8 (5 m)
%; 1sthelx pvector of averages of subgroup j
e _ . :
Sy =—ZSJ.- 1z the pooled covanance matrix
i=1
misthelx ptarget vector
n 15 the subgroup sample size
Hotelling
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6.5.4.3. Hotelling's T squared

T 2 upper The Upper Control Limit (UCL) on the control chart is
control limit

(thereisno T = pln-1 Fe

lower limit) n-p PP

where &, . 1sthe upper 100 2perecentile

of the & - distnnbution wath p andx —p df

The Hotelling T2 distance for averages when targets are unknown is
Casewhere  given by

no target is r
available 1 - =V alis =
T =n(%-X) 8 [%;-%)
_1&
X= sz"
J=1
Upper The Upper Control Limit (UCL) is given by
control limit _1
for no target o = 20T pe
case n—p Mg

where 77, 15 the upper 100 @ percentile

of the & distribution with p and» —p df

p is the number of variables, nisthe size of the subgroup, and k is the
number of subgroupsin the sample. There is no lower control limit, asis
the case for most multivariate control charts.
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6.5.4.3. Hotelling's T squared

Thereis As in the univariate case, for grouped data, the Hotelling T2 chart may
alsoa be accompanied by a chart that displays and monitors a measure of
dispersion dispersion within the subgroups. The statistic that fulfills this obligation
chart IS

(smilar to "
ansor R 2 _ [ S I
univariate z ;[Iﬁ x.r') Sy (xv;r' x.:")
control
chart) for each subgroup j.
The UCL for dispersion statistics is given by Alt (1985) as
;ﬁ,pi;ﬂjﬂ
To illustrate the correspondence between the univariate t and the
multivariate T2 observe the following:
o Xy
g «.."'?_z
follows at distribution. If we test the hypothesis that g = p
we get:
_ X T,
s '\J{-‘;
then
2= (%~ :'2
i
or
-1
i =n(x — 1) Iisj) (X — 1)
Generalizing to p variablesyields Hotelling's T2
Other Other multivariate charts for dispersion have been proposed; see Ryan
dispersion (2000, pp. 269-270).
charts
The principles outlined above will beillustrated next with examples.
NIST : :
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6.5.4.3.1. Example of Hotelling's T-squared Test
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6.5.4.3. Hotelling's T squared

6.5.4.3.1. Example of Hotelling's T-squared

Test

Case 1. Onegroup.

Testing The T 2 statistic can be employed to test
whet_her one Hg: m=mq
multivariate _
samplehas ~ aganst
amean H,: m does not equal mg
vector .
consistent Jnder Ho: ~ L
: . Jo—
\t,z\;lrtgetthe T2 =n{X — m) Sy (X —m)
has ajf:ﬂ—l distribution and
n—p
Fo=T2 | —_mF> _
B, P[” _ 1) B 3
Under H,, Fq follows anon-central F-distribution.
High value A high value for Fg indicates substantial deviations between the average
of Fo and hypothesized target values, suggesting a departure from Hp,. In order
indicates to perform a hypothesis test at a givervx-level, we select acritical value
departure Faxy . for Fo.
fromHg ’
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6.5.4.3.1. Example of Hotelling's T-squared Test

Sampledata  The datafor this example came from a production lot consisting of 13
units. There were three variables measured. The engineering nominal
specifications are (200, 550, 550). By redefining the three measurements
as the deviations from the nominals or targets, we can state the null
hypothesis as

0 0
Hym=|0| aganstH :m = [0
0

0
The following table shows the original observations and their deviations
from the target
Originals Deviations

A B C a b C
200 552 550 0 2 0
199 550 550 -1 0 0
197 551 551 -3 1 1
198 552 551 -2 2 1
199 552 551 -1 2 1
199 550 551 -1 0 1
200 550 551 0 0 1
200 551 552 0 1 2
200 550 552 0 0 2
200 550 551 0 0 1
198 550 551 -2 0 1
198 550 550 -2 0 0
198 550 551 -2 0 1
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6.5.4.3.2. Example 1 (continued)
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6.5.4.3.2.Example 1 (continued)

This page continues the example begun on the last page.

The Smatrix  The S matrix for the production measurement data (three measurements made
thirteen times) is
1076592 -0.03205 016026
S =|-0.02200 075641 -0.03205].
016026 -0.02205 041026

Meansof the  The means of the deviations and the S'1 matrix are
deviations
and the a b C

S-1 matrix

Means(})  -1077 0615 0923

0.9952 0.0258  -0.3867
S'1 Matrix 0.0258 1.3271 0.0936
-0.3867  0.0936 2.5959
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6.5.4.3.2. Example 1 (continued)

Computation  The sample set consists of n = 13 observations, so

of the T2
statistic
=13(X-0y 87 (X -0
09952 00258 -03867||-1.077
=13[—1.D?T 0615 0.923] 00258 13271 00936 || 0.615
03867 00936 259559 || 0523
-1.0°77
=13[-1.400 0.876 2.87]| 0.615 [=60.99
0923
The corresponding F value = (T2)(n-p)/[ p(n-1)] =60.99(10)/3(12) =16.94.
We reject The p-value at 16.94 for F 3 1 = .00030. Since this s considerably smaller
that the than an ¢x of, say, .01, we must reject H at least a1% level of significance.
samplemet  Therefore, we conclude that, on the average, the sample did not meet the
the target targets for the means.
mean
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6.5.4.3.3. Example 2 (multiple groups)
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6.5.4.3.3. Example 2 (multiple groups)

Casell: Multiple Groups

Hotelling T2 The datato be analyzed consists of k=14 subgroups of n=5 observations

example each on p=4 variables.We opt here to use the grand mean vector instead
with of atarget vector. The analysis proceeds as follows:

multiple

subgroups

Mean and STEP 1: Calculate the means and covariance matrices for each of the 14
covariance subgroups.

JEUTDS Subgroup 1

1 9.96 14.97 48.49 60.02
2 995 1494 4984 60.02
3 9.95 1495 48.85 60.00
4 999 14.99 49.89 60.06
5 999 14.99 4991 60.09
¥ 9.968 14.968 49.876 60.038

The variance-covariance matrix
.000420 .000445 .000515 .000695
.000445 .000520 .000640 .000695
.000515 .000640 .000880 .000865
.000695 .000695 .000865 .001320

These calculations are performed for each of the 14 subgroups.
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6.5.4.3.3. Example 2 (multiple groups)

Computation  STEP 2. Calculate the grand mean by averaging the 14 means.

of grand Calculate the pooled variance matrix by averaging the 14
mean and covariance matrices element by element.

pooled ¥ 9984 14985 49908 60.028
variance

matrix .0001907 .0002089 -.0000960 -.0000960

Shooled -0002089 .0002928 -.0000975 -.0001032

-.0000960 -.0000975 .0019357 .0015250
-.0000960 -.0001032 .0015250 .0015235

Computethe  STEP 3. Compute the inverse of the pooled covariance matrix
inver se of

the pooled st
covariance 24223.0-17158.5 237.7 126.2
matrix -17158.5 15654.1 -218.0 1974

237.7 -218.0 2446.3-2449.0
126.2 197.4-2449.0 3129.1

Computethe  STEP 4. Compute the T 2's for each of the 14 mean vectors.
T2s Kk T2 k T2

119.154 8 13.372
214.209 0 33.080
3 6.348 1021.405
410.87311 31.081
5 3.194 12 0.907
6 2.886 13 7.853
7 6.050 1410.37/8

The k is the subgroup number.

Computethe  STEP 5. Compute the Upper Control Limit, the UCL. Setting fx = .01

upper and using the formula
control limit
UCL:*E':;:'U[H‘U € = 4(13)(4) F4%13
k(n-)+1p  PHTUZ 1404 41-4
_ 208

—~(370)=14.52
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6.5.4.4. Hotelling's T2 Chart
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6.5.4.4.Hotelling's T2 Chart

Continuation ~ STEP 6. Plot the T 2 's against the sample numbers and include the UCL.

of example
started on the
previous
page
Mean and The following figure displays the resulting multivariate control charts.
dispersion
T %quare For keans
T2 control
charts -
4
20
u|
1 2 3 dq = & 7 g 9 i0 11 12 13 14
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6.5.4.4. Hotelling's T2 Chart

Interpretation  Inspection of this chart suggests an out-of-control conditions at sample

of control numbers 1, 9, 10, 11, and 12 since these points exceed the UCL of 14.52.
charts Fortunately, the process was apparently back in control after the periods
9-12.

The problem may be caused by one or more univariates, and it could be
easier to remedy than when the covariance plays arole in the creation of
the undesired situation. To study the cause or causes of the problem one
should also contemplate the individual univariate control charts.
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A Multivariate Analysis problem could start out with a substantial set
of variables with alarge inter-correlation structure. One of the tools
used to reduce such a complicated situation the well known method of
Principal Component Analysis.

The technique of principal component analysis enables us to create
and use areduced set of variables, which are called principal factors.
A reduced set is much easier to analyze and interpret. To study a data
set that results in the estimation of roughly 500 parameters may be
difficult, but if we could reduce theseto 5 it would certainly make our
day. We will show in what follows how to achieve this reduction.

While these principal factors represent or replace one or more of the
original variables, it should be noted that they are not just a one to one
transformation, so inverse transformations are not possible.

To shed alight on the structure of principal components analysis, let
us consider a multivariate sample variable, X. It isamatrix with n
rows and p columns. The p elements of each row are scores or
measurements on a subject, such as height, weight and age.

Next, standardize the X matrix so that each column mean is 0 and
each column varianceis 1. Call thismatrix Z. Each row of Z isa
vector variable, z, consisting of p elements. There are n such vector
variables. The main idea behind principal component analysisisto
derive alinear function y, consisting of n elements, for each of the
vector variables z. This linear function possesses an extremely
important property, namely, its variance is maximized. The number of
y vectorsis p, each y vector consists of n elements.
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6.5.5. Principal Components
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The linear function y isreferred to as a component of z. To illustrate
the computation of a single element for the jth y vector, consider the
producty =zV' , V' isacolumn vector of V, whereVisapxp
coefficient matrix that carries the p-element variable z into the derived
n-element variable y. V is known as the eigen vector matrix. The
dimension of zis 1 x p, thedimension of V' isp x 1. The scalar algebra
for the component score for theith individua of y;, j =1, ...pis: y;; =

V'1zg; + Viozgi + ... + V' gz Thisbecomesin matrix notation for all of
they. Y =2V.

The mean of yismy, = V'm, = 0, because m, = 0.

The dispersion matrix of y is
Dy=V'D,V=V'RV

Now, it can be shown that the dispersion matrix D, of a standardized
variable is a correlation matrix. Thus R is the correlation matrix for z

At thisjuncture you may be tempted to say: "so what?'. To answer
thislet uslook at the intercorrelations among the elements of a vector
variable. The number of parameters to be estimated for a p-element
variableis

e pMeans

e p variances

« (p?- p)/2 covariances

« for atotal of 2p + (p2-p)/2 parameters.
So

e If p=2,thereare5 parameters

o If p=10, there are 65 parameters

o If p=30, there are 495 parameters

All these parameters must be estimated and interpreted. That isa
herculean task, to say the least. Now, if we could transform the data
so that we obtain avector of uncorrelated variables, life becomes
much more bearable, since there are no covariances.
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Orthogonalizing Transfor mations

The equation y = V'z represents a transformation, wherey is the
transformed variable, z isthe original standardized variableand V is
the premultiplier to go from ztoy.

To produce a transformation vector for y for which the elements are
uncorrelated is the same as saying that we want V such that Dy isa

diagonal matrix. That is, all the off-diagonal elements of D, must be
zero. Thisis called an orthogonaliz ng transfor mation.

There are an infinite number of valuesfor V that will produce a
diagonal Dy, for any correlation matrix R. Thus the mathematical

problem "find aunique V such that Dy is diagonal™ cannot be solved
asit stands. A number of famous statisticians such as Karl Pearson

and Harold Hotelling pondered this problem and suggested a
"variance maximizing" solution.

Hotelling (1933) derived the "principal components® solution. It
proceeds as follows: for the first principal component, which will be
the first element of y and be defined by the coefficients in the first
column of V, (denoted by v,), we want a solution such that the

variance of y; will be maximized.
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6.5.5.1. Properties of Principal Components

Constrain vto The constraint on the numbersin v, is that the sum of the sgquares of

generatea the coefficients equals 1. Expressed mathematically, we wish to
unique solution  maximize

LS
Ei-l 1i

where
Y1i =V1' Z
and v;'vy =1 (thisiscalled "normalizing " v,).

Computation of  Substituting the middle equation in the first yields
first principal

component
fromR and v; 135 .,
— ..}',11 = 1i.r']. va
3
where R is the correlation matrix of Z, which, in turn, isthe
standardized matrix of X, the original data matrix. Therefore, we
want to maximize vq,'Rv; subject to v;'vy = 1.
The eigenstructure
Lagrange Let
multiplier
approach

¢ =viRv _111[";"1 - lj'
>

introducing the restriction on v, viathe Lagrange multiplier
approach. It can be shown (T.W. Anderson, 1958, page 347, theorem
8) that the vector of partial derivativesis

90, = 2Rv, - 24,v,
g,
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and setting this equal to zero, dividing out 2 and factoring gives
R-ATI)v, =0

Thisisknown as "the problem of the eigenstructure of R".

Setof p The partial differentiation resulted in a set of p homogeneous
homogeneous eguations, which may be written in matrix form as follows
equations
_[1—.3?.2.:! Mz fp ] _""1;' [0
1 {1_‘1z'jl 2y Vai | _ 0
; ! : 1. 9

The characteristic equation

Characterstic The characteristic equation of R is apolynomial of degree p, which
equation of Ris  isobtained by expanding the determinant of
a polynomial of

degreep
fy— A Mg
7 Fom — A 7
R-ag=| 7 |0
Tyl Py T — A
and solving for theroots A j,j =1, 2, ..., p.
Largest Specifically, the largest eigenvalue, A4, and its associated vector, v,
eigenvalue are required. Solving for this eigenvalue and vector is another
mammoth numerical task that can realistically only be performed by
acomputer. In general, software isinvolved and the algorithms are
complex.
Remainig p After obtaining the first eigenvalue, the processis repeated until all p
eigenvalues eigenvalues are computed.
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To succinctly define the full eigenstructure of R, we introduce
another matrix L, which isadiagonal matrix with j4; in the jth

position on the diagonal. Then the full eigenstructure of R isgiven as

RV =VL
where

V'V =VV'=|
and

VIRV=L =D,

Principal Factors

It was mentioned before that it is helpful to scale any transformation

y of avector variable z so that its elements have zero means and unit
variances. Such a standardized transformation is called a factoring of
z, or of R, and each linear component of the transformation is called

afactor.

Now, the principal components already have zero means, but their
variances are not 1; in fact, they are the eigenvalues, comprising the
diagonal elementsof L. It is possible to derive the principal factor
with unit variance from the principal component as follows

fi=2

VA

or for al factors:
_ r-1f2
f=L"1%
substituting V'zfor y we have
f=L17Vz=DH%

where

B=VL 12

The matrix B is then the matrix of factor score coefficients for
principal factors.

How many Eigenvalues?
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6.5.5.1. Properties of Principal Components

The number of eigenvalues, N, used in the final set determines the
dimensionality of the set of factor scores. For example, if the original
test consisted of 8 measurements on 100 subjects, and we extract 2
eigenvalues, the set of factor scoresisamatrix of 100 rows by 2
columns.

Each column or principal factor should represent a number of
original variables. Kaiser (1966) suggested arule of thumb that takes
asavaluefor N, the number of eigenvalues larger than unity.

Factor Structure

The primary interpretative device in principal componentsisthe
factor structure, computed as

S=VLY2

Sisamatrix whose elements are the correlations between the
principal components and the variables. If we retain, for example,
two elgenvalues, meaning that there are two principal components,
then the S matrix consists of two columns and p (number of
variables) rows.

Principal Component

Variable 1 2
1 ri1 rio
2 M1 Mo
3 rag s
4 ra1 r42

Ther;; are the correlation coefficients between variable i and
principal component j, wherei rangesfrom 1to 4 andj from 1 to 2.

SS isthe source of the "explained” correlations among the variables.
Its diagonal is called "the communality”.

Rotation

If this correlation matrix, i.e., the factor structure matrix, does not
help much in the interpretation, it is possible to rotate the axis of the
principal components. This may result in the polarization of the
correlation coefficients. Some practitioners refer to rotation after
generating the factor structure as factor analysis.
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A popular scheme for rotation was suggested by Henry Kaiser in
1958. He produced a method for orthogonal rotation of factors, called
the varimax rotation, which cleans up the factors as follows:

for each factor, high loadings (correlations) will result for a
few variables; therest will be near zero.

The following computer output from a principal component analysis
on a4-variable data set, followed by varimax rotation of the factor
structure, will illustrate his point.

Before Rotation After Rotation
Variable Factor 1 Factor 2 Factor 1 Factor 2

1 .853 -.989 997 .058
2 634 162 .089 987
3 .858 -.498 .989 076
4 633 136 103 965

Communality

A measure of how well the selected factors (principal components)
"explain” the variance of each of the variablesis given by a statistic
called communality. Thisis defined by

L
hy =3 S

Tl

That is: the square of the correlation of variable k with factor i gives
the part of the variance accounted for by that factor. The sum of these
squares for n factors is the communality, or explained variable for
that variable (row).

Roadmap to solvethe V matrix
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6.5.5.1. Properties of Principal Components

Main steps to In summary, here are the main steps to obtain the eigenstructure for a
obtaining correlation matrix.

elgenstructure 1. Compute R, the correlation matrix of the original data. R is
fora also the correlation matrix of the standardized data.

correlation

2. Obtain the characteristic equation of R which is a polynomial

matrix of degree p (the number of variables), obtained from
expanding the determinant of |R-} 1| = 0 and solving for the
roots A j, thatis: } 1, A2 - A p-

3. Then solve for the columns of the V matrix, (v4, Vo, ..vp). The
roots, J, i, are called the eigenvalues (or latent values). The
columns of V are called the eigenvectors.
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6.5.5.2.Numerical Example

Calculation A numerical example may clarify the mechanics of principal component analysis.
of principal

components

example

Sampledata  Let us analyze the following 3-variate dataset with 10 observations. Each
Set observation consists of 3 measurements on awafer thickness, horizontal and vertical
displacement.

e -] MO Lh - 09 0 O e

= & b o k= O e = L
B i O~ e - e
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6.5.5.2. Numerical Example

Computethe  First compute the correlation matrix
correlation
matrix

Loo &7 —10
E=|.67 100 =729
—.10 -2% 1.00

Solvefor the  Next solve for the roots of R, using software

roots of R A value proportion
11769 .590
2 .927 .899
3 .304 1.000

Notice that
« Each eigenvalue satisfies |R-A || = 0.

« Thesum of the eigenvalues = 3 = p, which is equal to thetrace of R (i.e,, the
sum of the main diagonal elements).

o Thedeterminant of R isthe product of the eigenvalues.
o Theproductis} 1 X 32X 3 3=.499.

Computethe  Substituting the first eigenvalue of 1.769 and R in the appropriate equation we

first column obtain
matrix

=7as &7 —.10 G ]

B =767 =22 | vy |=]|C

Vi ]

of theV
—. 10 —-29 =769

Thisisthe matrix expression for 3 homogeneous equations with 3 unknowns and
yields the first column of V: .64 .69 -.34 (again, a computerized solution is
indispensable).
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Repeating this procedure for the other 2 eigenvalues yields the matrix V

B4 38 —66
V=67 .10 72
-.34 51 20

Notice that if you multiply V by its transpose, the result is an identity matrix,
v'v=l,

Now form the matrix L Y2, which is a diagonal matrix whose elements are the
square roots of the eigenvalues of R. Then obtain S, the factor structure, using S =

V L12
6 —6& 1,33 — .37
] .69 . A0
-3 91 —. 45 11

So, for example, .91 isthe correlation between variable 2 and the first principal
component.

Next compute the communality, using the first two eigenvalues only

45 Le6e2 8140 - 0606

o' = = | 8140 8420 - 3321
[37 0% ]

-45 88 - 0e06— — 3321 9876

Communality consists of the diagonal elements.

var

1 .8662
2 .8420
3 .9876

This means that the first two principal components "explain” 86.62% of the first
variable, 84.20 % of the second variable, and 98.76% of the third.
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Computethe  The coefficient matrix, B, is formed using the reciprocals of the diagonals of L Y2
coefficient

matrix
48 40 -1.18
B=VI'=|.52 .10 1.31
.26 .95 37

Computethe  Finally, we can compute the factor scores from ZB, where Z is X converted to
principal standard score form. These columns are the principal factors.
factors

41 -89 06
211 07 63
46 -32 30
1.62 -1.00 70
70 1.09 65

F=ZB=
-85 132 -85
- a0 -1.31 26
24 172 =04
22 03 34
15 -91 265
Principal These factors can be plotted against the indices, which could be times. If timeis
factors used, the resulting plot is an example of a principal factors control chart.
control
chart
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6.6. Case Studies in Process Monitoring
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6.6.Case Studies in Process Monitoring

Detailed, The genera points of the first five sections are illustrated in this section
Realistic, using data from physical science and engineering applications. Each
Examples exampleis presented step-by-step in the text, and is often cross-linked

with the relevant sections of the chapter describing the analysisin
genera. Each analysis can also be repeated using a worksheet linked to
the appropriate Datapl ot macros. The worksheet is also linked to the
step-by-step analysis presented in the text for easy reference.

Contents: 1. Lithography Process Example
Section 6 2. Aerosol Particle Size Example
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6.6.1. Lithography Process
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6.6.1.Lithography Process

Lithography  This case study illustrates the use of control chartsin analyzing a
Process lithography process.

1. Background and Data

2. Graphical Representation of the Data
3. Subgroup Analysis

4. Shewhart Control Chart

5. Work This Example Y ourself
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6.6.1.1. Background and Data
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6.6.1.1.Background and Data
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monitor

Case Study for SPC in Batch Processing Environment

One of the assumptions in using classical Shewhart SPC chartsis that the only
source of variation is from part to part (or within subgroup variation). Thisis
the case for most continuous processing situations. However, many of today's
processing situations have different sources of variation. The semiconductor
industry is one of the areas where the processing creates multiple sources of
variation.

In semiconductor processing, the basic experimental unit isasilicon wafer.
Operations are performed on the wafer, but individual wafers can be grouped
multiple ways. In the diffusion area, up to 150 wafers are processed in one
timein adiffusion tube. In the etch area, single wafers are processed
individually. In the lithography area, the light exposure is done on sub-areas of
the wafer. There are many times during the production of a computer chip
where the experimental unit varies and thus there are different sources of
variation in this batch processing environment.

tHE following is a case study of alithography process. Five sites are measured
on each wafer, three wafers are measured in a cassette (typically a grouping of
24 - 25 wafers) and thirty cassettes of wafers are used in the study. The width
of alineisthe measurement under study. There are two line width variables.
Thefirst isthe original data and the second has been cleaned up somewhat.
This case study uses the raw data. The entire data table is 450 rows long with
six columns.
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6.6.1.1. Background and Data

Case study
data: wafer
line width
measur ements

Cassette Wafer Site

Rgt
Bot
Top
Lef
Cen
Rot
Bot
Top
Lef
Cen
Rgt
Bot
Top
Lef
Cen
Rgt
Bot
Top
Lef
Cen
Rot

WWWWWWWWWNDNDNDNDNDNNDNDNNNMNNNNNPEFRPRRPRPERPERPRPRPRPERPERPERPRPRERPERER
NNNNRPRPRPRPRPPRPPRPWOWWWWNDNDNNNPEPRPEPPRPPWOWWWWWNNNNNRERPRPERRPRE

NRPRPNRPRPRPRPNNRPRPNNREPRRNNNNMNNMNNONNRPNNRPENRENNNNNND®

. 199275
. 253081
. 074308
. 418206
. 393732
. 654947
. 003234

861268

. 136102
. 976495
. 887053
. 061239
. 625191
. 304313
. 233187
. 160233

518913

. 072211
. 287210
. 120452
. 063058
. 217220
. 472945
. 684581
. 900688

346254

. 172825
. 536538
. 966630
. 251576
. 198141
. 7128784
. 357348
. 673159

429586

. 231291
. 561993
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6.6.1.1. Background and Data
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6.6.1.1. Background and Data
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6.6.1.1. Background and Data
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6.6.1.1. Background and Data
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6.6.1.1. Background and Data
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6.6.1.1. Background and Data
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6.6.1.1. Background and Data
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6.6.1.1. Background and Data
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6.6.1.1. Background and Data
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6.6.1.2. Graphical Representation of the
Data

Thefirst step in analyzing the data is to generate some simple plots of
the response and then of the response versus the various factors.

4-Plot of ] ]
Data
- - ..
A,
4- 4- Chfoo T
3 ER
2 2
1- 1-
a T T T a T T T T T
0 100 200 300 400 500 a 1 2 a3 4 5 &
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50 5
a0 4
an ]
207 2 /
10 N 11
a q F——r—————————
2401 2 3 4528 7 4 -2 4 a0 1 2 a3
HISTOG RAM WIDTH WOR MAL PROBAB ILITY PLOT WIDTH

Interpretation  This 4-plot shows the following.

1. The run sequence plot (upper left) indicates that the location and
scale are not constant over time. This indicates that the three
factors do in fact have an effect of some kind.

2. Thelag plot (upper right) indicates that there is some mild

autocorrelation in the data. Thisis not unexpected as the data are
grouped in alogical order of the three factors (i.e., not
randomly) and the run sequence plot indicates that there are
factor effects.

3. The histogram (lower left) shows that most of the data fall
between 1 and 5, with the center of the data at about 2.2.

4. Due to the non-constant location and scale and autocorrelation in
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6.6.1.2. Graphical Representation of the Data

the data, distributional inferences from the normal probability
plot (lower right) are not meaningful.

The run sequence plot is shown at full size to show greater detail. In
addition, a numerical summary of the data is generated.

Run
Sequence -
Plot of Data
5
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*  MEDI AN = 0. 2453337E+01 * M N MUM = 0. 7465460E+00 *
% = *  LOWER QUART. = 0. 2046285E+01 *
kW = * LOWER H NGE = 0. 2048139E+01 *
* = *  UPPER HINGE =  0.2971948E+01 *
* = *  UPPER QUART. = 0.2987150E+01 *
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% = *  CAUCHY PPCC = 0. 5245036E+00 *
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This summary generates a variety of statistics. In this case, we are primarily interested in the
mean and standard deviation. From this summary, we see that the mean is 2.53 and the
standard deviation is 0.69.

The next step isto plot the response against each individual factor. For
comparison, we generate both a scatter plot and a box plot of the data.
The scatter plot shows more detail. However, comparisons are usually
easier to see with the box plot, particularly as the number of data points
and groups becomes larger.
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Interpretation  We can make the following conclusions based on the above scatter and
box plots.

1. Thereisconsiderable variation in the location for the various
cassettes. The medians vary from about 1.7 to 4.

2. Thereisalso some variation in the scale.
3. There are anumber of outliers.

Scatter plot
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Interpretation  We can make the following conclusions based on the above scatter and
box plots.

1. Thelocationsfor the 3 wafers are relatively constant.

2. The scalesfor the 3 wafers arerelatively constant.

3. There are afew outliers on the high side.

4. |tisreasonableto treat the wafer factor as homogeneous.
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Interpretation

Dex mean
and sd plots

Dex mean
plot

& o o
. v
= g
& 3- - 1
e O Lo
2 ; | z

a T T T T T
TOP LEFT CENTER RIGHT BOTTOM

SITE
BOX PLOT WIDTH SITE

We can make the following conclusions based on the above scatter and
box plots.

1. Thereissome variation in location based on site. The center site
in particular has alower median.

2. The scales are relatively constant across sites.
3. There are afew outliers.

We can use the dex mean plot and the dex standard deviation plot to

show the factor means and standard deviations together for better
comparison.
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6.6.1.2. Graphical Representation of the Data

Summary

NIST
SEMATECH

The above graphs show that there are differences between the lots and
the sites.

There are various ways we can create subgroups of this dataset: each
lot could be a subgroup, each wafer could be a subgroup, or each site
measured could be a subgroup (with only one data value in each
subgroup).

Recall that for aclassica Shewhart Means chart, the average within
subgroup standard deviation is used to calculate the control limits for
the Means chart. However, on the means chart you are monitoring the
subgroup mean-to-mean variation. Thereis no problem if you arein a
continuous processing situation - this becomes an issueif you are
operating in a batch processing environment.

We will look at various control charts based on different subgroupings
next.
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The resulting classical Shewhart control charts for each possible
subgroup are shown below.

Thefirst pair of control charts use the site as the subgroup. In this case,
that reduces to a subgroup size of one. That is, using the site as the
subgroup is equivalent to doing the control chart on the individual
items. A moving mean and a moving range chart are shown.

TARGET

MEAN OF LINE WIDTH

LCL

1 T T I T I
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Wafer as The next pair of control charts use the wafer as the subgroup. In this
subgroup case, that resultsin a subgroup size of 5. A mean and a standard
deviation control chart are shown.
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Cassette as The next pair of control charts use the cassette as the subgroup. In this
subgroup case, that resultsin a subgroup size of 15. A mean and a standard
deviation control chart are shown.

Mean control
chart
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Which of these subgroupings of the datais correct? Asyou can see,
each sugrouping produces a different chart. Part of the answer liesin
the manufacturing requirements for this process. Another aspect that
can be statistically determined is the magnitude of each of the sources
of variation. In order to understand our data structure and how much
variation each of our sources contribute, we need to perform a variance
component analysis. The variance component analysis for this data set
Is shown below.

Variance Component

Component Estimate
Cassette 0.2645
Wafer 0.0500
Site 0.1755

If your software does not generate the variance components directly,
they can be computed from a standard analysis of variance output by
equating means squares (M SS) to expected values (EMS).

Below we show SAS IMP 4 output for this dataset that gives the SS,
MSS, and components of variance (the model entered into IMPisa
nested, random factors model). The EMS table contains the
coefficients needed to write the equations setting M SS values equal to
their EMS's. Thisis further described below.

http://www.itl.nist.gov/div898/handbook/pmc/section6/pmc613.htm (4 of 5) [5/7/2002 4:28:35 PM]


http://www.itl.nist.gov/div898/handbook/prc/section4/prc44.htm

6.6.1.3. Subgroup Analysis

Tests wrt Random Effects

Source =S MS Mum DF Rum F Ratio Prokb=F
CazzettefRancom 127403 4.3932 29 103285 =000
Water[Cazsette] ZRandom 255209 042535 GO 24237 =000

site[Cazzette Wafer)l&Random 631786 01755 360

Expected Mean Squares

The Mean Sguare per rowe by the YWariance Component per column

Emi=
Intercept CazsettefRandom Wafer[Cazzette]&Random Site[Cassette Water]&Random

Irtercept 0 0 0 0
CassettedRandam 0 15 o 1
Wafer[Cazzette]&Randaom 0 0 o 1
site[Cazzette Water]&Random 0 0 0 1
plus 1.0times Residual Error Yariance

Variance Component Estimates
Componert “ar Comp Est Percent of Tatal
CassettedRandom 0.264524 o23.986
Wafer[CazzettelZRandom 0.04997 10195
Site[Cazzette Water)&Random 01732496 35816
Tatal 0.45999 100,000

These estimates bazed on eguating Mean Squares to Expected “Value.

Variance From the ANOVA table, labelled "Tests wrt to Random Effects® in the
Components  JMP output, we can make the following variance component
Estimation calculations:

4.3932 = (3*5)*Var(cassettes) + 5*Var(wafer) +
Var (site)

0.42535 = 5*Var(wafer) + Var(site)

0.1755 = Var(site)

Solving these equations we obtain the variance component estimates
0.2645, 0.04997 and 0.1755 for cassettes, wafers and sites, respectively.
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The largest source of variation in this datais the lot-to-lot variation. So,
using classical Shewhart methods, if we specify our subgroup to be
anything other than lot, we will be ignoring the known |lot-to-lot
variation and could get out-of-control points that already have a known,
assignable cause - the data comes from different lots. However, in the
lithography processing area the measurements of most interest are the
site level measurements, not the lot means. How can we get around this
seeming contradiction?

One solution isto chart the important sources of variation separately.
We would then be able to monitor the variation of our process and truly
understand where the variation is coming from and if it changes. For this
dataset, this approach would require having two sets of control charts,
one for the individual site measurements and the other for the lot means.
Thiswould double the number of charts necessary for this process (we
would have 4 charts for line width instead of 2).

Another solution would be to have one chart on the largest source of
variation. This would mean we would have one set of charts that
monitor the lot-to-lot variation. From a manufacturing standpoint, this
would be unacceptable.

We could create a non-standard chart that would plot all the individual
data values and group them together in a boxpl ot type format by lot. The
control limits could be generated to monitor the individual data values
while the lot-to-lot variation would be monitored by the patterns of the
groupings. Thiswould take special programming and management
intervention to implement non-standard charts in most floor shop control
systems.
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A commonly applied solution is the first option; have multiple charts on
this process. When creating the control limits for the lot means, care
must be taken to use the |ot-to-lot variation instead of the within lot
variation. The resulting control charts are: the standard

individual Ymoving range charts (as seen previously), and a control chart
on the lot means that is different from the previous lot means chart. This
new chart uses the lot-to-lot variation to calculate control limitsinstead
of the average within-lot standard deviation. The accompanying
standard deviation chart is the same as seen previously.

.
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The control limits [abeled with "UCL" and "LCL" are the standard
control limits. The control limits labeled with "UCL: LL" and "LCL:
LL" are based on the lot-to-lot variation.
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6.6.1.5.Work This Example Yourself

View This page alows you to repeat the analysis outlined in the case study
Dataplot description on the previous page using Dataplot . It is required that you
Macro for have already downloaded and installed Dataplot and configured your
this Case browser. to run Dataplot. Output from each analysis step below will be
Study displayed in one or more of the Dataplot windows. The four main

windows are the Output Window, the Graphics window, the Command
History window, and the data sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps

Results and Conclusions

Click on the links below to start Dataplot and run this case
study yourself. Each step may use results from previous
steps, so please be patient. Wait until the software verifies
that the current step is complete before clicking on the next
step.

Thelinks in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. I nvoke Dataplot and read data.

1. Read in the data.

1. You have read 5 columms of nunbers

into Dataplot, variables CASSETTE,

WAFER, SITE, W DTH, and RUNSEQ

2. Plot of the response variable

1. Nunerical sunmmary of W DTH.

2. 4-Plot of WDTH.

1. The summary shows the nmean line w dth

is 2.53 and the standard devi ati on

of the line width is 0.69.

2. The 4-pl ot shows non-const ant

| ocati on and scal e and noder ate

aut ocorrel ati on.

http://www.itl.nist.gov/div898/handbook/pmc/section6/pmc615.htm (1 of 3) [5/7/2002 4:28:36 PM]



http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pmc/section6/lithogra/lithogra.htm
http://www.itl.nist.gov/div898/handbook/pmc/section6/lithogra/lithogra.htm
http://www.itl.nist.gov/div898/handbook/pmc/section6/lithogra/lithogra.htm
http://www.itl.nist.gov/div898/handbook/pmc/section6/lithogra/lithogra.htm
http://www.itl.nist.gov/div898/handbook/pmc/section6/lithogra/lithogra.htm
http://www.itl.nist.gov/div898/handbook/dataplot.htm
http://www.itl.nist.gov/div898/software/dataplot/ftp/homepage.htm
http://www.itl.nist.gov/div898/handbook/dpbrows.htm
http://www.itl.nist.gov/div898/handbook/dpbrows.htm
http://www.itl.nist.gov/div898/handbook/pmc/section6/lithogra/dpmacros/data.dp
http://www.itl.nist.gov/div898/handbook/pmc/section6/lithogra/dpmacros/summary.dp
http://www.itl.nist.gov/div898/handbook/pmc/section6/lithogra/dpmacros/4plot.dp

6.6.1.5. Work This Example Yourself

3. Run sequence plot of WDTH 3. The run sequence pl ot shows
non-constant | ocation and scal e.

3. Cenerate scatter and box plots agai nst
i ndi vi dual factors.

1. Scatter plot of WDTH versus 1. The scatter plot shows consi derabl e
CASSETTE. variation in | ocation.

2. Box plot of WDTH versus 2. The box plot shows consi derabl e
CASSETTE. variation in location and scal e

and the prescence of sone outliers.

3. Scatter plot of WDTH versus 3. The scatter plot shows nininal
WAFER. variation in | ocation and scale.
4. Box plot of WDTH versus 4. The box pl ot shows m ni na
WAFER. variation in | ocation and scale.

It al so show sone outliers.

5. Scatter plot of WDTH versus 5. The scatter plot shows some
Sl TE. variation in | ocation.

6. Box plot of WDTH versus 6. The box pl ot shows some
_ SITE. variation in location. Scale

seens relatively constant.
Sone outliers.

7. Dex nean plot of WDTH ver sus
CASSETTE, WAFER, and SITE.

7. The dex nean pl ot shows effects
for CASSETTE and SITE, no effect
f or WAFER

8. Dex sd plot of WDTH versus
CASSETTE, WAFER, and SI TE.

8. The dex sd plot shows effects
for CASSETTE and SITE, no effect
f or WAFER.
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6.6.1.5. Work This Example Yourself

4. Subgroup anal ysi s.

1. Generate a noving nmean control The noving nean pl ot shows
chart. a large nunber of out of
control points.
2. CGenerate a nobving range control The novi na ranage pl ot shows
chart. a | arge nunber of out of
control points.
3. Cenerate a nean control chart The nmean control chart shows
for WAFER a | arge nunber of out of
control points.
4. Cenerate a sd control chart The sd control chart shows
for WAFER. no out of control points.
5. Generate a nean control chart The nean control chart shows
for CASSETTE. a |l arge nunber of out of
control points.
6. Generate a sd control chart The sd control chart shows
f or CASSETTE. ;
no out of control points.
7. CGenerate an anal ysis of . .
) L The anal ysis of variance and
variance. This is not f ,
currently inplenented in conponents of variance
DATAPLOT for nested cal cul ati ons show t hat
dat aset s. cassette to cassette
variation is 54% of the total
and site to site variation
is 36% of the total.
8. Cenerate a nean control chart
using lot-to-lot variation. The nean control chart shows one
point that is on the boundary of
bei ng out of control.
MIST . :
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6.6.2.1. Background and Data
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6. Process or Product Monitoring and Control

6.6. Case Studies in Process Monitoring

6.6.2. Aerosol Particle Size

6.6.2.1.Background and Data

Data Source

Data
Collection

Applications

The source of the data for this case study is Antuan Negiz who
analyzed these data while he was a post-doc in the NIST Statistical
Engineering Division from the lllinois Institute of Technology. Antuan
discussed this data in the paper (1994, " Statistical Monitoring and
Control of Multivariate Continuous Processes'.

These data were collected from an aerosol mini spray dryer device. The
purpose of this device isto convert aslurry stream into deposited
particlesin adrying chamber. The device injects the dlurry at high
speed. The dlurry is pulverized asit enters the drying chamber when it
comes into contact with a hot gas stream at low humidity. The liquid
contained in the pulverized slurry particlesis vaporized, then
transferred to the hot gas stream leaving behind dried small-sized
particles.

The response variable is particle size, which is collected equidistant in
time. There are avariety of associated variables that may affect the
injection process itself and hence the size and quality of the deposited
particles. For this case study, we restrict our analysis to the response
variable.

Such deposition process operations have many applications from
powdered laundry detergents at one extreme to ceramic molding at an
important other extreme. In ceramic molding, the distribution and
homogeneity of the particle sizes are particularly important because
after the molds are baked and cured, the properties of the final molded
ceramic product is strongly affected by the intermediate uniformity of
the base ceramic particles, which in turn is directly reflective of the
quality of the initial atomization process in the aerosol injection device.
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6.6.2.1. Background and Data

Aerosol
Particle Sze
Dynamic
Modeling
and Control

Case study
data

The data set consists of particle sizes collected over time. The basic
distributional properties of this process are of interest in terms of
distributional shape, constancy of size, and variation in size. In
addition, this time series may be examined for autocorrelation structure
to determine a prediction model of particle size as a function of
time--such amodel is frequently autoregressive in nature. Such a
high-quality prediction equation would be essential asafirst stepin
developing a predictor-corrective recursive feedback mechanism which
would serve as the core in developing and implementing real-time
dynamic corrective algorithms. The net effect of such algorthmsis, of
course, a particle size distribution that is much less variable, much
more stable in nature, and of much higher quality. All of thisresultsin
final ceramic mold products that are more uniform and predictable
across a wide range of important performance characteristics.

For the purposes of this case study, we restrict the analysis to
determining an appropriate Box-Jenkins model of the particle size.
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6.6.2.2. Model Identification

Check for Thefirst step in the analysisis to generate a run sequence plot of the
Sationarity, response variable. A run sequence plot can indicate stationarity (i.e.,
Outliers, constant location and scale), the presence of outliers, and seasonal
Seasonality patterns.

Non-stationarity can often be removed by differencing the data or
fitting some type of trend curve. We would then attempt to fit a
Box-Jenkins model to the differenced data or to the residuals after
fitting atrend curve.

Although Box-Jenkins models can estimate seasonal components, the
analyst needs to specify the seasonal period (for example, 12 for
monthly data). Seasonal components are common for economic time
series. They are less common for engineering and scientific data.
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6.6.2.2. Model Identification

I nter pretation
of the Run
Sequence Plot

Order of
Autoregressive
and Moving
Average
Components

Autocorrelation
Plot

We can make the following conclusions from the run sequence plot.

1. There does not seem to be asignificant trend. That is, we do
not need to difference the data or fit atrend curve to the
original data.

2. The data have an underlying pattern along with some high
frequency noise.

3. Although there is some high frequency noise, there does not
appear to be data points that are so extreme that we need to
delete them from the analysis.

4. There does not seem to be any obvious seasonal pattern in the
data (none would be expected in this case).

In summary, we will attempt to fit a Box-Jenkins model to the
original response variable without any prior trend removal and we
will not include a seasonal component in the model.

The next step isto determine the order of the autoregressive and
moving average terms in the Box-Jenkins model. We do this by
examining the sample autocorrelation and partial autocorrelation
plots of the response variable. We compare these sample plots to
theoretical patterns of these plotsin order to obtain the order of the
model to fit.

Thefirst step in Box-Jenkins model identification is to attempt to

identify whether an AR model, a MA model, or a mixture of the two
IS an appropriate model.
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This autocorrelation plot shows an exponentially decaying pattern.
Thisindicates that an AR model is appropriate.

Since an AR processisindicated by the autocorrelation plot, we
generate a partial autocorrelation plot to identify the order.

Partial
Autocorrelation
Plot

Partia| Au correlgtien
o
]

Lag
partlal autosorrelation plot ¥

Thefirst three lags are statistically significant, which indicates that
an AR(3) model may be appropriate.
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6.6.2.3. Model Estimation

Dataplot  Dataplot generated the following output for an AR(3) model.

ARMA

Output
PR R R R R R R
# NONLI NEAR LEAST SQUARES ESTI MATI ON FOR THE PARAMETERS OF #
# AN AR MA MODEL USI NG BACKFORECASTS #
BB R R R R R R R

SUMMARY OF I NI TI AL CONDI TI ONS

MODEL SPECI FI CATI ON

FACTOR (P D Q
1 3 0 0

=0

DEFAULT SCALI NG USED FOR ALL PARANMETERS.

##STEP Sl ZE FOR

#A#H##H#PARAVETER  ##APPROXI MATI NG

HEHHBHHAHH AR HHAH#HPARAVETER DESCRI PTI ON STARTI NG VALUES  #####DERI VATI VE
| NDEX ####H##H#HHTYPE #H#ORDER ##F| XED ##########( PAR)  ######H#H##( STP)

1 AR (FACTCR 1) 1 NO 0. 10000000E+00 0. 22896898E- 05
2 AR (FACTOR 1) 2 NO 0. 10000000E+00 0. 22688602E- 05
3 AR (FACTOR 1) 3 NO 0. 10000000E+00 0. 22438846E- 05
4 MJ #H#H NO 0. 10000000E+01 0. 25174593E- 05
NUMBER OF OBSERVATI ONS (N 559
MAXI MUM NUMBER OF | TERATI ONS ALLOWED (MT) 500
MAXI MUM NUMBER OF MODEL SUBRCUTI NE CALLS ALLOWED 1000

CONVERGENCE CRI TERI ON FOR TEST BASED ON THE
FORECASTED RELATI VE CHANGE | N RESI DUAL SUM OF SQUARES (STOPSS) 0. 1000E- 09

MAXI MUM SCALED RELATI VE CHANGE | N THE PARAMETERS (STOPP) 0. 1489E-07
MAXI MUM CHANGE ALLOWED I N THE PARAMETERS AT FI RST | TERATI ON ( DELTA) 100.0
RESI DUAL SUM OF SQUARES FOR | NPUT PARAMETER VALUES 0. 3537E+07

( BACKFORECASTS | NCLUDED)
RESI DUAL STANDARD DEVI ATI ON FOR | NPUT PARAMETER VALUES ( RSD) 79. 84
BASED ON DEGREES OF FREEDOM 559 - 0 - 4 = 555

NONDEFAULT VALUES. . ..
AFCTOL. ... V(31) = 0.2225074-307
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##### RESI DUAL SUM OF SQUARES CONVERGENCE #####

ESTI MATES FROM LEAST SQUARES FIT (* FOR FI XED PARAMETER)
HEHHBHH AR R R

PARAMETER STD DEV OF ###PAR/ HHHHRH AR APPROXI MATE
ESTI MATES ####PARAVETER ####( SD 95 PERCENT CONFI DENCE LIM TS

TYPE ORD ###( OF PAR)  ####ESTI MATES ##( PAR) #e##HH##LONER

FACTOR 1
AR 1 0.58969407E+00 0.41925732E-01 14.07 0.52061708E+00
AR 2 0.23795137E+00 0.47746327E-01  4.98 0. 15928434E+00
AR 3 0.15884704E+00 0.41922036E- 01 3.79 0.89776135E- 01
MJ ## 0.11472145E+03 0. 78615948E+00 145.93 0.11342617E+03

NUVBER OF OBSERVATI ONS (N 559

RES| DUAL SUM OF SQUARES 108. 9505

( BACKFORECASTS | NCLUDED)

RES| DUAL STANDARD DEVI ATI ON 0. 4430657

BASED ON DEGREES OF FREEDOM 559 - 0 - 4 = 555

APPROX| MATE CONDI TI ON' NUMBER 89. 28687

Interpretation  Thefirst section of the output identifies the model and shows the
of Output starting values for the fit. This output is primarily useful for verifying
that the model and starting values were correctly entered.

The section labelled "ESTIMATES FROM LEAST SQUARESFIT"
gives the parameter estimates, standard errors from the estimates, and
95% confidence limits for the parameters. A confidence interval that
contains zero indicates that the parameter is not statistically significant
and could probably be dropped from the model. In this case, the
parametersfor lags 1, 2, and 3 are all statistically significant.
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0. 65877107E+00
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0. 22791795E+00
0.11601673E+03
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6.6.2.4. Model Validation

Residuals After fitting the model, we should validate the time series model.

As with standard non-linear least squares fitting, the primary tool for
validating the model isresidual analysis. Asthistopic iscovered in
detail in the process modeling chapter, we do not discussit in detail

here.
4-Plot of The 4-plot isaconvenient graphical technique for model validation in
Residuals that it tests the assumptions for the residuals on a single graph.
2 2
1 - . ._'_ ..-... .
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I nter pretation
of the 4-Plot

Run

Sequence
Plot of

Residuals

We can make the following conclusions based on the above 4-plot.

1. Therun seguence plot shows that the residuals do not violate the

assumption of constant location and scale. It also shows that
most of the residuals arein therange (-1, 1).

2. Thelag plot indicates that the residual s appear to be random.
3. The histogram and normal probability plot indicate that the
normal distribution provides an adequate fit for this model.

This 4-plot of the residuals indicates that the fitted model isan
adequate model for these data.

We generate the individual plots from the 4-plot as separate plots to
show more detail.

2
1 — r
- ;. = I )
o] 1% wee e 7 2 L A N
S P Forentrnh A foed
g ::-'.r"-. e i ‘.'{#r:. L LS ":""r':.... .
[ ] a-r £, "5"" L e e e Ty rpf!lﬁ.
= I‘_r"rr"ﬁ.:lfrj' :rr._r B - o, ,r,;b,fr r‘_nrr el ..l'nn'_p r
i e A T T e R
- -1 . F .:-f . r r o '!,‘ L
. .r o
-1 -
-2 T | T T T T T T T
a 104 24 34d 4] S g4aa
SEQUEMNCE
AUN SEQUEMNCE PLOT RES

http://www.itl.nist.gov/div898/handbook/pmc/section6/pmc624.htm (2 of 4) [5/7/2002 4:28:38 PM]


http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm

6.6.2.4. Model Validation

Lag Plot of
Residuals

Histogram of
Residuals
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6.6.2.5.Work This Example Yourself

View This page allows you to repeat the analysis outlined in the case study
Datapl ot description on the previous page using Dataplot . It is required that you
Macro for have already downloaded and installed Dataplot and configured your
this Case browser. to run Dataplot. Output from each analysis step below will be
Sudy displayed in one or more of the Dataplot windows. The four main

windows are the Output Window, the Graphics window, the Command
History window, and the data sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps

Results and Conclusions

Click on the links below to start Dataplot and run
this case study yourself. Each step may use results
from previous steps, so please be patient. Wait until
the software verifies that the current step is complete
before clicking on the next step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Invoke Datapl ot and read data.

1. Read in the data.

1. You have read one columm of nunbers
into Datapl ot, variable Y.

2. Model identification plots

1. Run sequence plot of Y.

2. Autocorrelation plot of Y.

1. The run sequence plot shows that the
data appear to be stationary and do
not exhi bit seasonality.

2. The autocorrelation plot indicates an

AR process.
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3. Partial autocorrelation plot
of Y.

The partial autocorrelation pl ot

i ndi cates that an AR(3) nodel may

be appropri ate.

3. Estimate the nodel

1. ARVA fit of Y.

The ARVA fit shows that all 3

paraneters are statistically

si gni fi cant.

4. Model validation

1. CGenerate a 4-plot of the
resi dual s.

2. CGenerate a run sequence pl ot of

The 4-pl ot shows that the

assunptions for the residuals

are satisfied.

t he residual s.

3. Generate a lag plot for the
resi dual s.

4. Cenerate a histogramfor the
resi dual s.

5. CGenerate a normal probability
plot for the residuals.

The run sequence plot of the

resi duals shows that the

resi dual s have constant | ocation

and scale and are nostly in

the range (-1,1).

The lag plot of the residuals

i ndi cates that the residuals

are random

The hi stogram of the residuals

i ndi cates that the residuals

are adequately nodel ed by a

nornal distribution.

The nornml probability pl ot

of the residuals also

i ndi cates that the residuals

are adequately nodel ed by a

nornal distribution.
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Welcome to International SEMATECH

Tony Yen,
co-director of
Lithography at
International
SEMATECH and
an assignee
from TSMC, has
been named a
Fellow of SPIE,
the International
Society for
Optical
Engineering.
Yen, who is
among 25
people named to
the prestigious
list by the
society this year,
received the
honor for
contributions to,
and leadership
in, the
advancement of
optical
microlithography
for
semiconductor
manufacturing.
More...

International
SEMATECH
Wins EPA
Climate
Protection
Award
International
SEMATECH has
won this year's
prestigious
Climate
Protection
Award from the
u.S.
Environmental
Protection
Agency (EPA)
for its work in
reducing
perfluorocarbons
(PFCs)
emissions. PFC
emissions are
considered by
the EPA to be
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potent
greenhouse or
global warming
gases.
More...
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